Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.06664
Cited By
Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer
17 November 2017
David Madras
T. Pitassi
R. Zemel
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer"
50 / 50 papers shown
Title
Perils of Label Indeterminacy: A Case Study on Prediction of Neurological Recovery After Cardiac Arrest
Jakob Schoeffer
Maria De-Arteaga
Jonathan Elmer
227
0
0
05 Apr 2025
Learning to Defer for Causal Discovery with Imperfect Experts
Oscar Clivio
Divyat Mahajan
Perouz Taslakian
Sara Magliacane
Ioannis Mitliagkas
Valentina Zantedeschi
Alexandre Drouin
CML
88
0
0
18 Feb 2025
The Value of Information in Human-AI Decision-making
Ziyang Guo
Yifan Wu
Jason D. Hartline
Jessica Hullman
FAtt
64
0
0
10 Feb 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
45
1
0
18 Oct 2024
Unveiling AI's Blind Spots: An Oracle for In-Domain, Out-of-Domain, and Adversarial Errors
Shuangpeng Han
Mengmi Zhang
205
0
0
03 Oct 2024
Evaluating Human-AI Collaboration: A Review and Methodological Framework
George Fragiadakis
Christos Diou
George Kousiouris
Mara Nikolaidou
66
12
0
09 Jul 2024
Towards Integrating Personal Knowledge into Test-Time Predictions
Isaac Lage
S. Parbhoo
Finale Doshi-Velez
27
1
0
12 Jun 2024
Building Socially-Equitable Public Models
Yejia Liu
Jianyi Yang
Pengfei Li
Tongxin Li
Shaolei Ren
OffRL
46
0
0
04 Jun 2024
A Causal Framework for Evaluating Deferring Systems
Filippo Palomba
Andrea Pugnana
Jose M. Alvarez
Salvatore Ruggieri
CML
59
3
0
29 May 2024
Selective Annotation via Data Allocation: These Data Should Be Triaged to Experts for Annotation Rather Than the Model
Chen Huang
Yang Deng
Wenqiang Lei
Jiancheng Lv
Ido Dagan
48
4
0
20 May 2024
Learning To Guide Human Decision Makers With Vision-Language Models
Debodeep Banerjee
Stefano Teso
Burcu Sayin
Andrea Passerini
40
1
0
25 Mar 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
58
0
0
13 Mar 2024
Investigating Gender Fairness in Machine Learning-driven Personalized Care for Chronic Pain
Pratik Gajane
Sean Newman
Mykola Pechenizkiy
John D. Piette
FaML
28
0
0
29 Feb 2024
AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
Clara Punzi
Roberto Pellungrini
Mattia Setzu
F. Giannotti
D. Pedreschi
25
5
0
09 Feb 2024
A2C: A Modular Multi-stage Collaborative Decision Framework for Human-AI Teams
Shahroz Tariq
Mohan Baruwal Chhetri
Surya Nepal
Cécile Paris
45
6
0
25 Jan 2024
Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention
Anqi Mao
M. Mohri
Yutao Zhong
34
22
0
23 Oct 2023
Confounding-Robust Policy Improvement with Human-AI Teams
Ruijiang Gao
Mingzhang Yin
37
3
0
13 Oct 2023
Learning to Abstain From Uninformative Data
Yikai Zhang
Songzhu Zheng
M. Dalirrooyfard
Pengxiang Wu
Anderson Schneider
Anant Raj
Yuriy Nevmyvaka
Chao Chen
26
2
0
25 Sep 2023
When Are Two Lists Better than One?: Benefits and Harms in Joint Decision-making
Kate Donahue
Sreenivas Gollapudi
Kostas Kollias
37
3
0
22 Aug 2023
Co-creating a globally interpretable model with human input
Rahul Nair
9
0
0
23 Jun 2023
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
Raymond Fok
Daniel S. Weld
34
61
0
12 May 2023
Data-Driven Subgroup Identification for Linear Regression
Zachary Izzo
Ruishan Liu
James Zou
OOD
23
4
0
29 Apr 2023
Learning Personalized Decision Support Policies
Umang Bhatt
Valerie Chen
Katherine M. Collins
Parameswaran Kamalaruban
Emma Kallina
Adrian Weller
Ameet Talwalkar
OffRL
58
10
0
13 Apr 2023
Who Should Predict? Exact Algorithms For Learning to Defer to Humans
Hussein Mozannar
Hunter Lang
Dennis L. Wei
P. Sattigeri
Subhro Das
David Sontag
32
43
0
15 Jan 2023
Counterfactuals for the Future
Lucius E.J. Bynum
Joshua R. Loftus
Julia Stoyanovich
33
10
0
07 Dec 2022
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
Shubham Sharma
Jette Henderson
Joydeep Ghosh
FedML
MoE
28
5
0
10 Oct 2022
Learning When to Advise Human Decision Makers
Gali Noti
Yiling Chen
50
15
0
27 Sep 2022
Sample Efficient Learning of Predictors that Complement Humans
Mohammad-Amin Charusaie
Hussein Mozannar
David Sontag
Samira Samadi
46
33
0
19 Jul 2022
Forming Effective Human-AI Teams: Building Machine Learning Models that Complement the Capabilities of Multiple Experts
Patrick Hemmer
Sebastian Schellhammer
Michael Vossing
Johannes Jakubik
G. Satzger
42
37
0
16 Jun 2022
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
54
109
0
15 Jun 2022
Who Goes First? Influences of Human-AI Workflow on Decision Making in Clinical Imaging
Riccardo Fogliato
Shreya Chappidi
M. Lungren
Michael Fitzke
Mark Parkinson
Diane U Wilson
Paul Fisher
Eric Horvitz
K. Inkpen
Besmira Nushi
24
70
0
19 May 2022
Trucks Don't Mean Trump: Diagnosing Human Error in Image Analysis
J.D. Zamfirescu-Pereira
Jerry Chen
Emily Wen
Allison Koenecke
N. Garg
Emma Pierson
24
5
0
15 May 2022
Affective Medical Estimation and Decision Making via Visualized Learning and Deep Learning
M. Eslami
Solale Tabarestani
Ehsan Adeli
G. Elwyn
T. Elze
Mengyu Wang
Nazlee Zebardast
Nassir Navab
M. Adjouadi
16
0
0
09 May 2022
On the Utility of Prediction Sets in Human-AI Teams
Varun Babbar
Umang Bhatt
Adrian Weller
28
31
0
03 May 2022
Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
Maria De-Arteaga
Alexandra Chouldechova
Artur Dubrawski
33
4
0
29 Apr 2022
Calibrated Learning to Defer with One-vs-All Classifiers
Rajeev Verma
Eric Nalisnick
26
43
0
08 Feb 2022
Improving Learning-to-Defer Algorithms Through Fine-Tuning
Naveen Raman
Michael Yee
21
8
0
18 Dec 2021
Teaching Humans When To Defer to a Classifier via Exemplars
Hussein Mozannar
Arvindmani Satyanarayan
David Sontag
41
43
0
22 Nov 2021
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration
Gavin Kerrigan
Padhraic Smyth
M. Steyvers
30
48
0
29 Sep 2021
Incorporating Uncertainty in Learning to Defer Algorithms for Safe Computer-Aided Diagnosis
Jessie Liu
B. Gallego
S. Barbieri
27
14
0
17 Aug 2021
Disaggregated Interventions to Reduce Inequality
Lucius E.J. Bynum
Joshua R. Loftus
Julia Stoyanovich
42
13
0
01 Jul 2021
Human-AI Collaboration with Bandit Feedback
Ruijiang Gao
M. Saar-Tsechansky
Maria De-Arteaga
Ligong Han
Min Kyung Lee
Matthew Lease
54
49
0
22 May 2021
CheXbreak: Misclassification Identification for Deep Learning Models Interpreting Chest X-rays
E. Chen
Andy Kim
R. Krishnan
J. Long
A. Ng
Pranav Rajpurkar
26
2
0
18 Mar 2021
Differentiable Learning Under Triage
Nastaran Okati
A. De
Manuel Gomez Rodriguez
38
63
0
16 Mar 2021
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
23
7
0
25 Sep 2020
Unifying Model Explainability and Robustness via Machine-Checkable Concepts
Vedant Nanda
Till Speicher
John P. Dickerson
Krishna P. Gummadi
Muhammad Bilal Zafar
AAML
14
4
0
01 Jul 2020
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Tulio Ribeiro
Daniel S. Weld
42
584
0
26 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
34
29
0
29 May 2019
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1