Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.05615
Cited By
Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features
15 November 2017
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features"
23 / 23 papers shown
Title
Revisiting Random Binning Features: Fast Convergence and Strong Parallelizability
Lingfei Wu
Ian En-Hsu Yen
Jie Chen
Rui Yan
42
37
0
14 Sep 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
71
156
0
26 Apr 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
135
1,099
0
01 Nov 2017
The Error Probability of Random Fourier Features is Dimensionality Independent
Jean Honorio
Yu-Jun Li
27
9
0
27 Oct 2017
First-order Methods Almost Always Avoid Saddle Points
Jason D. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
137
83
0
20 Oct 2017
Non-Stationary Spectral Kernels
Sami Remes
Markus Heinonen
Samuel Kaski
63
103
0
24 May 2017
Data-driven Random Fourier Features using Stein Effect
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
59
30
0
23 May 2017
Improved prediction accuracy for disease risk mapping using Gaussian Process stacked generalisation
Samir Bhatt
E. Cameron
Seth R Flaxman
D. Weiss
David L. Smith
P. Gething
38
104
0
10 Dec 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
282
11,150
0
14 Mar 2016
A multi-resolution approximation for massive spatial datasets
Matthias Katzfuss
92
245
0
16 Jul 2015
Fast Two-Sample Testing with Analytic Representations of Probability Measures
Kacper P. Chwialkowski
Aaditya Ramdas
Dino Sejdinovic
Arthur Gretton
61
155
0
15 Jun 2015
Generalized Spectral Kernels
Yves-Laurent Kom Samo
Stephen J. Roberts
57
57
0
07 Jun 2015
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
88
130
0
06 Jun 2015
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
58
78
0
09 Mar 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
87
166
0
29 Dec 2014
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
A la Carte - Learning Fast Kernels
Zichao Yang
Alex Smola
Le Song
A. Wilson
86
133
0
19 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
112
913
0
17 Feb 2014
Variational inference for sparse spectrum Gaussian process regression
Linda S. L. Tan
V. M. Ong
David J. Nott
Ajay Jasra
106
15
0
09 Jun 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
81
609
0
18 Feb 2013
Expectation Propagation for approximate Bayesian inference
T. Minka
137
1,909
0
10 Jan 2013
Variable noise and dimensionality reduction for sparse Gaussian processes
Edward Snelson
Zoubin Ghahramani
107
79
0
27 Jun 2012
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DH
ODL
193
2,201
0
24 Jun 2012
1