ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05615
  4. Cited By
Spatial Mapping with Gaussian Processes and Nonstationary Fourier
  Features

Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features

15 November 2017
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
    GP
ArXiv (abs)PDFHTML

Papers citing "Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features"

23 / 23 papers shown
Title
Revisiting Random Binning Features: Fast Convergence and Strong
  Parallelizability
Revisiting Random Binning Features: Fast Convergence and Strong Parallelizability
Lingfei Wu
Ian En-Hsu Yen
Jie Chen
Rui Yan
42
37
0
14 Sep 2018
Random Fourier Features for Kernel Ridge Regression: Approximation
  Bounds and Statistical Guarantees
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
71
156
0
26 Apr 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
135
1,099
0
01 Nov 2017
The Error Probability of Random Fourier Features is Dimensionality Independent
Jean Honorio
Yu-Jun Li
27
9
0
27 Oct 2017
First-order Methods Almost Always Avoid Saddle Points
First-order Methods Almost Always Avoid Saddle Points
Jason D. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
137
83
0
20 Oct 2017
Non-Stationary Spectral Kernels
Non-Stationary Spectral Kernels
Sami Remes
Markus Heinonen
Samuel Kaski
63
103
0
24 May 2017
Data-driven Random Fourier Features using Stein Effect
Data-driven Random Fourier Features using Stein Effect
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
59
30
0
23 May 2017
Improved prediction accuracy for disease risk mapping using Gaussian
  Process stacked generalisation
Improved prediction accuracy for disease risk mapping using Gaussian Process stacked generalisation
Samir Bhatt
E. Cameron
Seth R Flaxman
D. Weiss
David L. Smith
P. Gething
38
104
0
10 Dec 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
282
11,150
0
14 Mar 2016
A multi-resolution approximation for massive spatial datasets
A multi-resolution approximation for massive spatial datasets
Matthias Katzfuss
92
245
0
16 Jul 2015
Fast Two-Sample Testing with Analytic Representations of Probability
  Measures
Fast Two-Sample Testing with Analytic Representations of Probability Measures
Kacper P. Chwialkowski
Aaditya Ramdas
Dino Sejdinovic
Arthur Gretton
61
155
0
15 Jun 2015
Generalized Spectral Kernels
Generalized Spectral Kernels
Yves-Laurent Kom Samo
Stephen J. Roberts
57
57
0
07 Jun 2015
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
88
130
0
06 Jun 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
58
78
0
09 Mar 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
87
166
0
29 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
A la Carte - Learning Fast Kernels
A la Carte - Learning Fast Kernels
Zichao Yang
Alex Smola
Le Song
A. Wilson
86
133
0
19 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
112
913
0
17 Feb 2014
Variational inference for sparse spectrum Gaussian process regression
Variational inference for sparse spectrum Gaussian process regression
Linda S. L. Tan
V. M. Ong
David J. Nott
Ajay Jasra
106
15
0
09 Jun 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
81
609
0
18 Feb 2013
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
137
1,909
0
10 Jan 2013
Variable noise and dimensionality reduction for sparse Gaussian
  processes
Variable noise and dimensionality reduction for sparse Gaussian processes
Edward Snelson
Zoubin Ghahramani
107
79
0
27 Jun 2012
Practical recommendations for gradient-based training of deep
  architectures
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DHODL
193
2,201
0
24 Jun 2012
1