ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01506
  4. Cited By
Towards Automatic 3D Shape Instantiation for Deployed Stent Grafts: 2D
  Multiple-class and Class-imbalance Marker Segmentation with Equally-weighted
  Focal U-Net

Towards Automatic 3D Shape Instantiation for Deployed Stent Grafts: 2D Multiple-class and Class-imbalance Marker Segmentation with Equally-weighted Focal U-Net

4 November 2017
Xiao-Yun Zhou
Su-Lin Lee
Guang-Zhong Yang
    3DPC
ArXivPDFHTML

Papers citing "Towards Automatic 3D Shape Instantiation for Deployed Stent Grafts: 2D Multiple-class and Class-imbalance Marker Segmentation with Equally-weighted Focal U-Net"

2 / 2 papers shown
Title
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Xiao-Yun Zhou
Guang-Zhong Yang
11
77
0
11 Sep 2018
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
283
10,613
0
19 Feb 2017
1