Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.01204
Cited By
Metrics for Deep Generative Models
3 November 2017
Nutan Chen
Alexej Klushyn
Richard Kurle
Xueyan Jiang
Justin Bayer
Patrick van der Smagt
SyDa
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Metrics for Deep Generative Models"
24 / 24 papers shown
Title
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation
Mingze Sun
Chen Guo
Puhua Jiang
Shiwei Mao
Yurun Chen
Ruqi Huang
69
4
0
18 Sep 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
50
0
0
09 Sep 2024
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
Junhao Chen
Manyi Li
Zherong Pan
Xifeng Gao
Changhe Tu
DiffM
43
2
0
07 Jun 2024
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
32
2
0
11 Mar 2024
Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
Yong-Hyun Park
Mingi Kwon
J. Choi
Junghyo Jo
Youngjung Uh
DiffM
40
60
0
24 Jul 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
26
1
0
24 Mar 2023
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Yong-Hyun Park
Mingi Kwon
Junghyo Jo
Youngjung Uh
DiffM
41
22
0
24 Feb 2023
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
Takehiro Aoshima
Takashi Matsubara
47
4
0
26 Nov 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
44
3
0
25 Jan 2022
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
30
14
0
09 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
45
62
0
30 Apr 2021
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
29
42
0
18 Jun 2020
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
35
39
0
12 Feb 2020
Data Interpolations in Deep Generative Models under Non-Simply-Connected Manifold Topology
Jiseob Kim
Byoung-Tak Zhang
6
2
0
20 Jan 2019
Fast Approximate Geodesics for Deep Generative Models
Nutan Chen
Francesco Ferroni
Alexej Klushyn
A. Paraschos
Justin Bayer
Patrick van der Smagt
DRL
19
30
0
19 Dec 2018
Active Learning based on Data Uncertainty and Model Sensitivity
Nutan Chen
Alexej Klushyn
A. Paraschos
Djalel Benbouzid
Patrick van der Smagt
13
17
0
06 Aug 2018
Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)
Søren Hauberg
19
31
0
13 Jun 2018
Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds
Daniele Grattarola
Daniele Zambon
Cesare Alippi
L. Livi
GNN
35
40
0
16 May 2018
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
35
112
0
23 Feb 2018
1