Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00851
Cited By
v1
v2
v3 (latest)
Provable defenses against adversarial examples via the convex outer adversarial polytope
2 November 2017
Eric Wong
J. Zico Kolter
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (387★)
Papers citing
"Provable defenses against adversarial examples via the convex outer adversarial polytope"
50 / 942 papers shown
Title
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
139
1,254
0
29 Apr 2019
Distributed generation of privacy preserving data with user customization
Xiao Chen
Thomas Navidi
Stefano Ermon
Ram Rajagopal
69
11
0
20 Apr 2019
Reward Potentials for Planning with Learned Neural Network Transition Models
B. Say
Scott Sanner
Sylvie Thiébaux
32
4
0
19 Apr 2019
Gotta Catch Ém All: Using Honeypots to Catch Adversarial Attacks on Neural Networks
Shawn Shan
Emily Wenger
Bolun Wang
Yangqiu Song
Haitao Zheng
Ben Y. Zhao
89
75
0
18 Apr 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
74
35
0
12 Apr 2019
The coupling effect of Lipschitz regularization in deep neural networks
Nicolas P. Couellan
40
5
0
12 Apr 2019
Universal Lipschitz Approximation in Bounded Depth Neural Networks
Jérémy E. Cohen
Todd P. Huster
Ravid Cohen
AAML
65
23
0
09 Apr 2019
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
99
69
0
06 Apr 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
96
856
0
05 Apr 2019
Minimum Uncertainty Based Detection of Adversaries in Deep Neural Networks
Fatemeh Sheikholeslami
Swayambhoo Jain
G. Giannakis
AAML
67
25
0
05 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
64
152
0
01 Apr 2019
A Provable Defense for Deep Residual Networks
M. Mirman
Gagandeep Singh
Martin Vechev
82
26
0
29 Mar 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
60
31
0
27 Mar 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
79
76
0
25 Mar 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
79
46
0
25 Mar 2019
The LogBarrier adversarial attack: making effective use of decision boundary information
Chris Finlay
Aram-Alexandre Pooladian
Adam M. Oberman
AAML
79
25
0
25 Mar 2019
A Formalization of Robustness for Deep Neural Networks
T. Dreossi
Shromona Ghosh
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
GAN
71
30
0
24 Mar 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
91
14
0
23 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
79
57
0
20 Mar 2019
Algorithms for Verifying Deep Neural Networks
Changliu Liu
Tomer Arnon
Christopher Lazarus
Christopher A. Strong
Clark W. Barrett
Mykel J. Kochenderfer
AAML
102
403
0
15 Mar 2019
On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models
Paul Michel
Xian Li
Graham Neubig
J. Pino
AAML
79
136
0
15 Mar 2019
On Certifying Non-uniform Bound against Adversarial Attacks
Chen Liu
Ryota Tomioka
Volkan Cevher
AAML
79
19
0
15 Mar 2019
A Research Agenda: Dynamic Models to Defend Against Correlated Attacks
Ian Goodfellow
AAML
OOD
85
31
0
14 Mar 2019
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
100
2
0
10 Mar 2019
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
86
45
0
06 Mar 2019
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
Mahyar Fazlyab
M. Morari
George J. Pappas
AAML
92
233
0
04 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
50
9
0
04 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
89
41
0
03 Mar 2019
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
140
117
0
27 Feb 2019
Architecting Dependable Learning-enabled Autonomous Systems: A Survey
Chih-Hong Cheng
Dhiraj Gulati
Rongjie Yan
44
4
0
27 Feb 2019
Disentangled Deep Autoencoding Regularization for Robust Image Classification
Zhenyu Duan
Martin Renqiang Min
Erran L. Li
Mingbo Cai
Yi Tian Xu
Bingbing Ni
24
2
0
27 Feb 2019
Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification
Jianlin Li
Pengfei Yang
Jiangchao Liu
Liqian Chen
Xiaowei Huang
Lijun Zhang
AAML
76
80
0
26 Feb 2019
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
68
44
0
25 Feb 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
144
271
0
23 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
64
60
0
22 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
95
211
0
21 Feb 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
72
183
0
20 Feb 2019
Fast Neural Network Verification via Shadow Prices
Vicencc Rubies-Royo
Roberto Calandra
D. Stipanović
Claire Tomlin
AAML
89
41
0
19 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
141
905
0
18 Feb 2019
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser
Steve Hanneke
Nathan Srebro
85
141
0
12 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
207
2,056
0
08 Feb 2019
Robustness Certificates Against Adversarial Examples for ReLU Networks
Sahil Singla
Soheil Feizi
AAML
68
21
0
01 Feb 2019
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
39
2
0
01 Feb 2019
Augmenting Model Robustness with Transformation-Invariant Attacks
Houpu Yao
Zhe Wang
Guangyu Nie
Yassine Mazboudi
Yezhou Yang
Yi Ren
AAML
OOD
31
3
0
31 Jan 2019
A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance
A. Shamir
Itay Safran
Eyal Ronen
O. Dunkelman
GAN
AAML
59
95
0
30 Jan 2019
Defense Methods Against Adversarial Examples for Recurrent Neural Networks
Ishai Rosenberg
A. Shabtai
Yuval Elovici
Lior Rokach
AAML
GAN
81
42
0
28 Jan 2019
Characterizing the Shape of Activation Space in Deep Neural Networks
Thomas Gebhart
Paul Schrater
Alan Hylton
AAML
52
7
0
28 Jan 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
110
456
0
27 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
175
2,566
0
24 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
73
145
0
15 Jan 2019
Previous
1
2
3
...
16
17
18
19
Next