ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00141
  4. Cited By
Training GANs with Optimism

Training GANs with Optimism

31 October 2017
C. Daskalakis
Andrew Ilyas
Vasilis Syrgkanis
Haoyang Zeng
ArXivPDFHTML

Papers citing "Training GANs with Optimism"

50 / 112 papers shown
Title
Second-Order Mirror Descent: Convergence in Games Beyond Averaging and
  Discounting
Second-Order Mirror Descent: Convergence in Games Beyond Averaging and Discounting
Bolin Gao
Lacra Pavel
25
8
0
18 Nov 2021
Near-Optimal No-Regret Learning for Correlated Equilibria in
  Multi-Player General-Sum Games
Near-Optimal No-Regret Learning for Correlated Equilibria in Multi-Player General-Sum Games
Ioannis Anagnostides
C. Daskalakis
Gabriele Farina
Maxwell Fishelson
Noah Golowich
T. Sandholm
62
53
0
11 Nov 2021
Uncoupled Bandit Learning towards Rationalizability: Benchmarks,
  Barriers, and Algorithms
Uncoupled Bandit Learning towards Rationalizability: Benchmarks, Barriers, and Algorithms
Jibang Wu
Haifeng Xu
Fan Yao
30
1
0
10 Nov 2021
Minimax Optimization: The Case of Convex-Submodular
Minimax Optimization: The Case of Convex-Submodular
Arman Adibi
Aryan Mokhtari
Hamed Hassani
21
7
0
01 Nov 2021
Sig-Wasserstein GANs for Time Series Generation
Sig-Wasserstein GANs for Time Series Generation
Hao Ni
Lukasz Szpruch
Marc Sabate Vidales
Baoren Xiao
Magnus Wiese
Shujian Liao
SyDa
AI4TS
19
73
0
01 Nov 2021
GDA-AM: On the effectiveness of solving minimax optimization via
  Anderson Acceleration
GDA-AM: On the effectiveness of solving minimax optimization via Anderson Acceleration
Huan He
Shifan Zhao
Yuanzhe Xi
Joyce C. Ho
Y. Saad
34
1
0
06 Oct 2021
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
36
9
0
28 Sep 2021
Constants of Motion: The Antidote to Chaos in Optimization and Game
  Dynamics
Constants of Motion: The Antidote to Chaos in Optimization and Game Dynamics
Georgios Piliouras
Xiao Wang
39
0
0
08 Sep 2021
Last-iterate Convergence in Extensive-Form Games
Last-iterate Convergence in Extensive-Form Games
Chung-Wei Lee
Christian Kroer
Haipeng Luo
17
39
0
27 Jun 2021
Decentralized Local Stochastic Extra-Gradient for Variational
  Inequalities
Decentralized Local Stochastic Extra-Gradient for Variational Inequalities
Aleksandr Beznosikov
Pavel Dvurechensky
Anastasia Koloskova
V. Samokhin
Sebastian U. Stich
Alexander Gasnikov
32
43
0
15 Jun 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max
  Optimization
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
26
40
0
18 Apr 2021
Learning in Matrix Games can be Arbitrarily Complex
Learning in Matrix Games can be Arbitrarily Complex
Gabriel P. Andrade
Rafael Frongillo
Georgios Piliouras
15
31
0
05 Mar 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
30
59
0
25 Feb 2021
Evolutionary Game Theory Squared: Evolving Agents in Endogenously
  Evolving Zero-Sum Games
Evolutionary Game Theory Squared: Evolving Agents in Endogenously Evolving Zero-Sum Games
Stratis Skoulakis
Tanner Fiez
Ryan Sim
Georgios Piliouras
Lillian J. Ratliff
21
13
0
15 Dec 2020
Adaptive extra-gradient methods for min-max optimization and games
Adaptive extra-gradient methods for min-max optimization and games
Kimon Antonakopoulos
E. V. Belmega
P. Mertikopoulos
64
46
0
22 Oct 2020
Adaptive and Universal Algorithms for Variational Inequalities with
  Optimal Convergence
Adaptive and Universal Algorithms for Variational Inequalities with Optimal Convergence
Alina Ene
Huy Le Nguyen
27
14
0
15 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
22
1
0
22 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
21
11
0
16 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
35
81
0
16 Jun 2020
A Unified Single-loop Alternating Gradient Projection Algorithm for
  Nonconvex-Concave and Convex-Nonconcave Minimax Problems
A Unified Single-loop Alternating Gradient Projection Algorithm for Nonconvex-Concave and Convex-Nonconcave Minimax Problems
Zi Xu
Hui-Li Zhang
Yang Xu
Guanghui Lan
27
99
0
03 Jun 2020
On the Impossibility of Global Convergence in Multi-Loss Optimization
On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
29
32
0
26 May 2020
Generative Adversarial Networks (GANs Survey): Challenges, Solutions,
  and Future Directions
Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions
Divya Saxena
Jiannong Cao
AAML
AI4CE
26
286
0
30 Apr 2020
Geometry-Aware Gradient Algorithms for Neural Architecture Search
Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
31
67
0
16 Apr 2020
Flexible numerical optimization with ensmallen
Flexible numerical optimization with ensmallen
Ryan R. Curtin
Marcus Edel
Rahul Prabhu
S. Basak
Zhihao Lou
Conrad Sanderson
18
1
0
09 Mar 2020
Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games
Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games
Tianyi Lin
Zhengyuan Zhou
P. Mertikopoulos
Michael I. Jordan
18
49
0
23 Feb 2020
Global Convergence and Variance-Reduced Optimization for a Class of
  Nonconvex-Nonconcave Minimax Problems
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
25
83
0
22 Feb 2020
GANs May Have No Nash Equilibria
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
33
43
0
21 Feb 2020
Distributed No-Regret Learning in Multi-Agent Systems
Distributed No-Regret Learning in Multi-Agent Systems
Xiao Xu
Qing Zhao
16
12
0
20 Feb 2020
Last iterate convergence in no-regret learning: constrained min-max
  optimization for convex-concave landscapes
Last iterate convergence in no-regret learning: constrained min-max optimization for convex-concave landscapes
Qi Lei
Sai Ganesh Nagarajan
Ioannis Panageas
Tianlin Li
22
43
0
17 Feb 2020
Efficient Policy Learning from Surrogate-Loss Classification Reductions
Efficient Policy Learning from Surrogate-Loss Classification Reductions
Andrew Bennett
Nathan Kallus
OffRL
31
16
0
12 Feb 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
33
244
0
11 Feb 2020
Near-Optimal Algorithms for Minimax Optimization
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
34
251
0
05 Feb 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved
  Complexities
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
21
25
0
22 Jan 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
46
63
0
26 Dec 2019
Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point
  Optimization
Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization
Abhishek Roy
Yifang Chen
Krishnakumar Balasubramanian
P. Mohapatra
16
26
0
03 Dec 2019
Poincaré Recurrence, Cycles and Spurious Equilibria in
  Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
MLT
22
41
0
28 Oct 2019
Stabilizing Generative Adversarial Networks: A Survey
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
29
84
0
30 Sep 2019
Fast and Provable ADMM for Learning with Generative Priors
Fast and Provable ADMM for Learning with Generative Priors
Fabian Latorre Gómez
Armin Eftekhari
V. Cevher
GAN
30
43
0
07 Jul 2019
Linear Lower Bounds and Conditioning of Differentiable Games
Linear Lower Bounds and Conditioning of Differentiable Games
Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
31
10
0
17 Jun 2019
Revisiting Stochastic Extragradient
Revisiting Stochastic Extragradient
Konstantin Mishchenko
D. Kovalev
Egor Shulgin
Peter Richtárik
Yura Malitsky
11
66
0
27 May 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
20
36
0
26 May 2019
Differentiable Game Mechanics
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
37
79
0
13 May 2019
Automatic Video Colorization using 3D Conditional Generative Adversarial
  Networks
Automatic Video Colorization using 3D Conditional Generative Adversarial Networks
Panagiotis Kouzouglidis
Giorgos Sfikas
Christophoros Nikou
GAN
13
17
0
08 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
135
0
18 Apr 2019
Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System
Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System
James P. Bailey
Georgios Piliouras
14
40
0
05 Mar 2019
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Justin Fu
Aviral Kumar
Matthew Soh
Sergey Levine
OffRL
19
141
0
26 Feb 2019
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for
  Saddle Point Problems: Proximal Point Approach
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
27
325
0
24 Jan 2019
Previous
123
Next