ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.09982
17
8

Second-Order Mirror Descent: Convergence in Games Beyond Averaging and Discounting

18 November 2021
Bolin Gao
Lacra Pavel
ArXivPDFHTML
Abstract

In this paper, we propose a second-order extension of the continuous-time game-theoretic mirror descent (MD) dynamics, referred to as MD2, which provably converges to mere (but not necessarily strict) variationally stable states (VSS) without using common auxiliary techniques such as time-averaging or discounting. We show that MD2 enjoys no-regret as well as an exponential rate of convergence towards strong VSS upon a slight modification. MD2 can also be used to derive many novel continuous-time primal-space dynamics. We then use stochastic approximation techniques to provide a convergence guarantee of discrete-time MD2 with noisy observations towards interior mere VSS. Selected simulations are provided to illustrate our results.

View on arXiv
Comments on this paper