ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10174
  4. Cited By
SGD Learns Over-parameterized Networks that Provably Generalize on
  Linearly Separable Data

SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data

27 October 2017
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
    MLT
ArXivPDFHTML

Papers citing "SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data"

50 / 60 papers shown
Title
Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes
Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes
Ruiqi Zhang
Jingfeng Wu
Licong Lin
Peter L. Bartlett
28
0
0
05 Apr 2025
SCoTTi: Save Computation at Training Time with an adaptive framework
SCoTTi: Save Computation at Training Time with an adaptive framework
Ziyu Li
Enzo Tartaglione
Van-Tam Nguyen
33
0
0
19 Dec 2023
Polynomially Over-Parameterized Convolutional Neural Networks Contain
  Structured Strong Winning Lottery Tickets
Polynomially Over-Parameterized Convolutional Neural Networks Contain Structured Strong Winning Lottery Tickets
A. D. Cunha
Francesco d’Amore
Emanuele Natale
MLT
24
1
0
16 Nov 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small
  Initialization
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
34
18
0
24 Jul 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural
  Networks
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
27
3
0
26 May 2023
Dynamic Sparse Training via Balancing the Exploration-Exploitation
  Trade-off
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off
Shaoyi Huang
Bowen Lei
Dongkuan Xu
Hongwu Peng
Yue Sun
Mimi Xie
Caiwen Ding
23
19
0
30 Nov 2022
Do highly over-parameterized neural networks generalize since bad
  solutions are rare?
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
24
1
0
07 Nov 2022
Sparsity in Continuous-Depth Neural Networks
Sparsity in Continuous-Depth Neural Networks
H. Aliee
Till Richter
Mikhail Solonin
I. Ibarra
Fabian J. Theis
Niki Kilbertus
29
10
0
26 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
39
84
0
18 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Implicit Full Waveform Inversion with Deep Neural Representation
Implicit Full Waveform Inversion with Deep Neural Representation
Jian Sun
K. Innanen
AI4CE
37
32
0
08 Sep 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient
  Algorithms
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
32
2
0
13 Jun 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
A. Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic
  Gradient Descent for Shallow Neural Networks
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
How does unlabeled data improve generalization in self-training? A
  one-hidden-layer theoretical analysis
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis
Shuai Zhang
Hao Wu
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
SSL
MLT
41
22
0
21 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning
  Optimization Landscape
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
25
34
0
20 Jan 2022
Regularization by Misclassification in ReLU Neural Networks
Regularization by Misclassification in ReLU Neural Networks
Elisabetta Cornacchia
Jan Hązła
Ido Nachum
Amir Yehudayoff
NoLa
23
2
0
03 Nov 2021
Path Regularization: A Convexity and Sparsity Inducing Regularization
  for Parallel ReLU Networks
Path Regularization: A Convexity and Sparsity Inducing Regularization for Parallel ReLU Networks
Tolga Ergen
Mert Pilanci
29
16
0
18 Oct 2021
Global Optimality Beyond Two Layers: Training Deep ReLU Networks via
  Convex Programs
Global Optimality Beyond Two Layers: Training Deep ReLU Networks via Convex Programs
Tolga Ergen
Mert Pilanci
OffRL
MLT
27
32
0
11 Oct 2021
Theory of overparametrization in quantum neural networks
Theory of overparametrization in quantum neural networks
Martín Larocca
Nathan Ju
Diego García-Martín
Patrick J. Coles
M. Cerezo
37
188
0
23 Sep 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
  Trained by Gradient Descent
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
25
0
25 Jun 2021
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous
  Neural Networks
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
22
33
0
11 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural
  networks
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks
Enzo Tartaglione
Andrea Bragagnolo
A. Fiandrotti
Marco Grangetto
ODL
UQCV
15
34
0
16 Nov 2020
Deep Learning is Singular, and That's Good
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Biwei Huang
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
24
26
0
22 Oct 2020
Predicting Training Time Without Training
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
18
24
0
28 Aug 2020
Neural Anisotropy Directions
Neural Anisotropy Directions
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
28
16
0
17 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep
  neural networks
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
32
147
0
20 May 2020
Symmetry & critical points for a model shallow neural network
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
28
13
0
23 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
34
54
0
25 Feb 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
11
4
0
22 Feb 2020
Learning Parities with Neural Networks
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
24
76
0
18 Feb 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating
  Decreasing Paths to Infinity
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
32
19
0
31 Dec 2019
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
How does topology influence gradient propagation and model performance
  of deep networks with DenseNet-type skip connections?
How does topology influence gradient propagation and model performance of deep networks with DenseNet-type skip connections?
Kartikeya Bhardwaj
Guihong Li
R. Marculescu
30
1
0
02 Oct 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
37
31
0
28 Jun 2019
On the Noisy Gradient Descent that Generalizes as SGD
On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu
Wenqing Hu
Haoyi Xiong
Jun Huan
Vladimir Braverman
Zhanxing Zhu
MLT
24
10
0
18 Jun 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural
  Networks on Classification Problems
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
13
33
0
23 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
14
109
0
09 May 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise
  for Overparameterized Neural Networks
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
33
351
0
27 Mar 2019
Is Deeper Better only when Shallow is Good?
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
25
45
0
08 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
31
61
0
06 Mar 2019
Copying Machine Learning Classifiers
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
6
18
0
05 Mar 2019
Parameter Efficient Training of Deep Convolutional Neural Networks by
  Dynamic Sparse Reparameterization
Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization
Hesham Mostafa
Xin Wang
29
307
0
15 Feb 2019
On a Sparse Shortcut Topology of Artificial Neural Networks
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
21
0
22 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
22
446
0
21 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao-quan Song
18
191
0
29 Oct 2018
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
10
51
0
25 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of
  memorization capacity
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
18
117
0
17 Oct 2018
12
Next