ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10044
  4. Cited By
Distributional Reinforcement Learning with Quantile Regression

Distributional Reinforcement Learning with Quantile Regression

27 October 2017
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
ArXivPDFHTML

Papers citing "Distributional Reinforcement Learning with Quantile Regression"

50 / 401 papers shown
Title
Deep Learning Tubes for Tube MPC
Deep Learning Tubes for Tube MPC
David D. Fan
Ali-akbar Agha-mohammadi
Evangelos A. Theodorou
32
57
0
05 Feb 2020
Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for
  Addressing Value Estimation Errors
Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors
Jingliang Duan
Yang Guan
Shengbo Eben Li
Yangang Ren
B. Cheng
OffRL
25
174
0
09 Jan 2020
Sample-based Distributional Policy Gradient
Sample-based Distributional Policy Gradient
Rahul Singh
Keuntaek Lee
Yongxin Chen
23
19
0
08 Jan 2020
A Survey of Deep Reinforcement Learning in Video Games
A Survey of Deep Reinforcement Learning in Video Games
Kun Shao
Zhentao Tang
Yuanheng Zhu
Nannan Li
Dongbin Zhao
OffRL
AI4TS
43
188
0
23 Dec 2019
Adapting Behaviour for Learning Progress
Adapting Behaviour for Learning Progress
Tom Schaul
Diana Borsa
David Ding
David Szepesvari
Georg Ostrovski
Will Dabney
Simon Osindero
22
18
0
14 Dec 2019
Efficient and Robust Reinforcement Learning with Uncertainty-based Value
  Expansion
Efficient and Robust Reinforcement Learning with Uncertainty-based Value Expansion
Bo Zhou
Hongsheng Zeng
Fan Wang
Yunxiang Li
Hao Tian
11
18
0
10 Dec 2019
Worst Cases Policy Gradients
Worst Cases Policy Gradients
Yichuan Tang
Jian Zhang
Ruslan Salakhutdinov
27
75
0
09 Nov 2019
Distributional Reward Decomposition for Reinforcement Learning
Distributional Reward Decomposition for Reinforcement Learning
Zichuan Lin
Li Zhao
Derek Yang
Tao Qin
Guangwen Yang
Tie-Yan Liu
OffRL
13
15
0
06 Nov 2019
Fully Parameterized Quantile Function for Distributional Reinforcement
  Learning
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
Derek Yang
Li Zhao
Zichuan Lin
Tao Qin
Jiang Bian
Tie-Yan Liu
OOD
OffRL
26
135
0
05 Nov 2019
Being Optimistic to Be Conservative: Quickly Learning a CVaR Policy
Being Optimistic to Be Conservative: Quickly Learning a CVaR Policy
Ramtin Keramati
Christoph Dann
Alex Tamkin
Emma Brunskill
19
75
0
05 Nov 2019
Modelling heterogeneous distributions with an Uncountable Mixture of
  Asymmetric Laplacians
Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians
Axel Brando
Jose A. Rodríguez-Serrano
Jordi Vitrià
Alberto Rubio
6
21
0
27 Oct 2019
Benchmarking Batch Deep Reinforcement Learning Algorithms
Benchmarking Batch Deep Reinforcement Learning Algorithms
Shih-Han Chou
Wen-Yen Chang
W. Hsu
Jianlong Fu
OffRL
27
182
0
03 Oct 2019
Quantile QT-Opt for Risk-Aware Vision-Based Robotic Grasping
Quantile QT-Opt for Risk-Aware Vision-Based Robotic Grasping
Cristian Bodnar
A. Li
Karol Hausman
P. Pastor
Mrinal Kalakrishnan
OffRL
28
50
0
01 Oct 2019
An Open-Source Framework for Adaptive Traffic Signal Control
An Open-Source Framework for Adaptive Traffic Signal Control
Wade Genders
S. Razavi
19
29
0
01 Sep 2019
An Optimistic Perspective on Offline Reinforcement Learning
An Optimistic Perspective on Offline Reinforcement Learning
Rishabh Agarwal
Dale Schuurmans
Mohammad Norouzi
OffRL
OnRL
36
69
0
10 Jul 2019
General non-linear Bellman equations
General non-linear Bellman equations
H. V. Hasselt
John Quan
Matteo Hessel
Zhongwen Xu
Diana Borsa
André Barreto
29
14
0
08 Jul 2019
Learning Policies through Quantile Regression
Learning Policies through Quantile Regression
Oliver Richter
Roger Wattenhofer
16
0
0
27 Jun 2019
Modern Deep Reinforcement Learning Algorithms
Modern Deep Reinforcement Learning Algorithms
Sergey Ivanov
A. Dýakonov
OffRL
29
39
0
24 Jun 2019
DeepMDP: Learning Continuous Latent Space Models for Representation
  Learning
DeepMDP: Learning Continuous Latent Space Models for Representation Learning
Carles Gelada
Saurabh Kumar
Jacob Buckman
Ofir Nachum
Marc G. Bellemare
BDL
24
281
0
06 Jun 2019
Distributional Policy Optimization: An Alternative Approach for
  Continuous Control
Distributional Policy Optimization: An Alternative Approach for Continuous Control
Chen Tessler
Guy Tennenholtz
Shie Mannor
OffRL
18
44
0
23 May 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
30
96
0
23 May 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
19
117
0
22 May 2019
Stochastically Dominant Distributional Reinforcement Learning
Stochastically Dominant Distributional Reinforcement Learning
John D. Martin
Michal Lyskawinski
Xiaohu Li
Brendan Englot
23
24
0
17 May 2019
Distributional Reinforcement Learning for Efficient Exploration
Distributional Reinforcement Learning for Efficient Exploration
B. Mavrin
Shangtong Zhang
Hengshuai Yao
Linglong Kong
Kaiwen Wu
Yaoliang Yu
OOD
OffRL
22
87
0
13 May 2019
Non-Stationary Markov Decision Processes, a Worst-Case Approach using
  Model-Based Reinforcement Learning, Extended version
Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning, Extended version
Erwan Lecarpentier
Emmanuel Rachelson
21
82
0
22 Apr 2019
Deep Reinforcement Learning with Decorrelation
Deep Reinforcement Learning with Decorrelation
B. Mavrin
Hengshuai Yao
Linglong Kong
37
8
0
18 Mar 2019
Machine Learning in IoT Security: Current Solutions and Future
  Challenges
Machine Learning in IoT Security: Current Solutions and Future Challenges
Fatima Hussain
Rasheed Hussain
Syed Ali Hassan
Ekram Hossain
37
519
0
14 Mar 2019
Catalyst.RL: A Distributed Framework for Reproducible RL Research
Catalyst.RL: A Distributed Framework for Reproducible RL Research
Sergey Kolesnikov
Oleksii Hrinchuk
OffRL
25
8
0
28 Feb 2019
Statistics and Samples in Distributional Reinforcement Learning
Statistics and Samples in Distributional Reinforcement Learning
Mark Rowland
Robert Dadashi
Saurabh Kumar
Rémi Munos
Marc G. Bellemare
Will Dabney
OffRL
14
88
0
21 Feb 2019
Distributional reinforcement learning with linear function approximation
Distributional reinforcement learning with linear function approximation
Marc G. Bellemare
Nicolas Le Roux
Pablo Samuel Castro
Subhodeep Moitra
74
23
0
08 Feb 2019
Artificial Intelligence for Prosthetics - challenge solutions
Artificial Intelligence for Prosthetics - challenge solutions
L. Kidzinski
Carmichael F. Ong
Sharada Mohanty
Jennifer Hicks
Sean F. Carroll
...
E. Tumer
J. Watson
M. Salathé
Sergey Levine
Scott L. Delp
15
40
0
07 Feb 2019
A Comparative Analysis of Expected and Distributional Reinforcement
  Learning
A Comparative Analysis of Expected and Distributional Reinforcement Learning
Clare Lyle
Pablo Samuel Castro
Marc G. Bellemare
OffRL
9
78
0
30 Jan 2019
A Theoretical Analysis of Deep Q-Learning
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
28
596
0
01 Jan 2019
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
31
68
0
18 Dec 2018
Dopamine: A Research Framework for Deep Reinforcement Learning
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
28
276
0
14 Dec 2018
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
88
1,236
0
30 Nov 2018
Reward learning from human preferences and demonstrations in Atari
Reward learning from human preferences and demonstrations in Atari
Borja Ibarz
Jan Leike
Tobias Pohlen
G. Irving
Shane Legg
Dario Amodei
33
387
0
15 Nov 2018
QUOTA: The Quantile Option Architecture for Reinforcement Learning
QUOTA: The Quantile Option Architecture for Reinforcement Learning
Fengxiang Yang
Zhun Zhong
Zhiming Luo
Sheng Lian
Shaozi Li
OffRL
16
29
0
05 Nov 2018
Preparing for the Unexpected: Diversity Improves Planning Resilience in
  Evolutionary Algorithms
Preparing for the Unexpected: Diversity Improves Planning Resilience in Evolutionary Algorithms
Thomas Gabor
Lenz Belzner
Thomy Phan
Kyrill Schmid
19
14
0
30 Oct 2018
Predictive Uncertainty through Quantization
Predictive Uncertainty through Quantization
Bastiaan S. Veeling
Rianne van den Berg
Max Welling
UQCV
8
1
0
12 Oct 2018
Predicting Periodicity with Temporal Difference Learning
Predicting Periodicity with Temporal Difference Learning
Kristopher De Asis
Brendan Bennett
R. Sutton
14
1
0
20 Sep 2018
Distributional Multivariate Policy Evaluation and Exploration with the
  Bellman GAN
Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN
Dror Freirich
Ron Meir
Aviv Tamar
OffRL
27
13
0
06 Aug 2018
Autoregressive Quantile Networks for Generative Modeling
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
28
85
0
14 Jun 2018
Implicit Quantile Networks for Distributional Reinforcement Learning
Implicit Quantile Networks for Distributional Reinforcement Learning
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
OffRL
13
529
0
14 Jun 2018
The Potential of the Return Distribution for Exploration in RL
The Potential of the Return Distribution for Exploration in RL
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
29
9
0
11 Jun 2018
Distributional Advantage Actor-Critic
Distributional Advantage Actor-Critic
Shangda Li
Selina Bing
Steven Yang
OffRL
8
6
0
10 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
21
372
0
08 Jun 2018
Nonlinear Distributional Gradient Temporal-Difference Learning
Nonlinear Distributional Gradient Temporal-Difference Learning
Chao Qu
Shie Mannor
Huan Xu
30
12
0
20 May 2018
An Analysis of Categorical Distributional Reinforcement Learning
An Analysis of Categorical Distributional Reinforcement Learning
Mark Rowland
Marc G. Bellemare
Will Dabney
Rémi Munos
Yee Whye Teh
25
101
0
22 Feb 2018
Quantile Markov Decision Process
Quantile Markov Decision Process
Xiaocheng Li
Huaiyang Zhong
M. Brandeau
29
5
0
15 Nov 2017
Previous
123456789
Next