Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.07457
Cited By
Learning Wasserstein Embeddings
20 October 2017
Nicolas Courty
Rémi Flamary
Mélanie Ducoffe
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Wasserstein Embeddings"
22 / 22 papers shown
Title
Robust and Efficient Transfer Learning via Supernet Transfer in Warm-started Neural Architecture Search
Prabhant Singh
Joaquin Vanschoren
AAML
OOD
115
0
0
26 Jul 2024
CLAMS: A System for Zero-Shot Model Selection for Clustering
Prabhant Singh
Pieter Gijsbers
Murat Onur Yildirim
Elif Ceren Gok
Joaquin Vanschoren
75
0
0
15 Jul 2024
Neural approximation of Wasserstein distance via a universal architecture for symmetric and factorwise group invariant functions
Samantha Chen
Yusu Wang
72
4
0
01 Aug 2023
Curriculum Reinforcement Learning using Optimal Transport via Gradual Domain Adaptation
Peide Huang
Mengdi Xu
Jiacheng Zhu
Laixi Shi
Fei Fang
Ding Zhao
CLL
99
25
0
18 Oct 2022
Wasserstein Task Embedding for Measuring Task Similarities
Xinran Liu
Yikun Bai
Yuzhe Lu
Andrea Soltoggio
Soheil Kolouri
OT
83
25
0
24 Aug 2022
Neural Embedding: Learning the Embedding of the Manifold of Physics Data
Sang Eon Park
Philip C. Harris
B. Ostdiek
PINN
DRL
AI4CE
74
17
0
10 Aug 2022
Can Push-forward Generative Models Fit Multimodal Distributions?
Antoine Salmona
Valentin De Bortoli
J. Delon
A. Desolneux
DiffM
85
39
0
29 Jun 2022
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
103
24
0
10 Jun 2022
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Yuzhe Lu
Xinran Liu
Andrea Soltoggio
Soheil Kolouri
84
8
0
11 Dec 2021
Learning Generalized Gumbel-max Causal Mechanisms
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
72
20
0
11 Nov 2021
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
57
12
0
24 Feb 2021
Central Limit Theorems for General Transportation Costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
OT
52
28
0
12 Feb 2021
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
94
89
0
16 Jun 2020
PLG-IN: Pluggable Geometric Consistency Loss with Wasserstein Distance in Monocular Depth Estimation
Noriaki Hirose
Satoshi Koide
Keisuke Kawano
R. Kondo
69
7
0
03 Jun 2020
Deep Learning for Learning Graph Representations
Wenwu Zhu
Xin Eric Wang
Peng Cui
GNN
AI4CE
50
23
0
02 Jan 2020
Learning transport cost from subset correspondence
Ruishan Liu
Akshay Balsubramani
James Zou
OT
54
14
0
29 Sep 2019
Interpretable ICD Code Embeddings with Self- and Mutual-Attention Mechanisms
Dixin Luo
Hongteng Xu
Lawrence Carin
22
5
0
13 Jun 2019
Learning Embeddings into Entropic Wasserstein Spaces
Charlie Frogner
F. Mirzazadeh
Justin Solomon
74
32
0
08 May 2019
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
81
44
0
19 Feb 2019
An Entropic Optimal Transport Loss for Learning Deep Neural Networks under Label Noise in Remote Sensing Images
B. Damodaran
Rémi Flamary
Vivien Seguy
Nicolas Courty
NoLa
63
40
0
02 Oct 2018
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Hongteng Xu
Wenlin Wang
Wen Liu
Lawrence Carin
MedIm
FedML
89
86
0
12 Sep 2018
BourGAN: Generative Networks with Metric Embeddings
Chang Xiao
Peilin Zhong
Changxi Zheng
GAN
88
69
0
19 May 2018
1