ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.07457
  4. Cited By
Learning Wasserstein Embeddings

Learning Wasserstein Embeddings

20 October 2017
Nicolas Courty
Rémi Flamary
Mélanie Ducoffe
ArXiv (abs)PDFHTML

Papers citing "Learning Wasserstein Embeddings"

22 / 22 papers shown
Title
Robust and Efficient Transfer Learning via Supernet Transfer in Warm-started Neural Architecture Search
Robust and Efficient Transfer Learning via Supernet Transfer in Warm-started Neural Architecture Search
Prabhant Singh
Joaquin Vanschoren
AAMLOOD
115
0
0
26 Jul 2024
CLAMS: A System for Zero-Shot Model Selection for Clustering
CLAMS: A System for Zero-Shot Model Selection for Clustering
Prabhant Singh
Pieter Gijsbers
Murat Onur Yildirim
Elif Ceren Gok
Joaquin Vanschoren
75
0
0
15 Jul 2024
Neural approximation of Wasserstein distance via a universal
  architecture for symmetric and factorwise group invariant functions
Neural approximation of Wasserstein distance via a universal architecture for symmetric and factorwise group invariant functions
Samantha Chen
Yusu Wang
72
4
0
01 Aug 2023
Curriculum Reinforcement Learning using Optimal Transport via Gradual
  Domain Adaptation
Curriculum Reinforcement Learning using Optimal Transport via Gradual Domain Adaptation
Peide Huang
Mengdi Xu
Jiacheng Zhu
Laixi Shi
Fei Fang
Ding Zhao
CLL
99
25
0
18 Oct 2022
Wasserstein Task Embedding for Measuring Task Similarities
Wasserstein Task Embedding for Measuring Task Similarities
Xinran Liu
Yikun Bai
Yuzhe Lu
Andrea Soltoggio
Soheil Kolouri
OT
83
25
0
24 Aug 2022
Neural Embedding: Learning the Embedding of the Manifold of Physics Data
Neural Embedding: Learning the Embedding of the Manifold of Physics Data
Sang Eon Park
Philip C. Harris
B. Ostdiek
PINNDRLAI4CE
74
17
0
10 Aug 2022
Can Push-forward Generative Models Fit Multimodal Distributions?
Can Push-forward Generative Models Fit Multimodal Distributions?
Antoine Salmona
Valentin De Bortoli
J. Delon
A. Desolneux
DiffM
85
39
0
29 Jun 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
103
24
0
10 Jun 2022
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Yuzhe Lu
Xinran Liu
Andrea Soltoggio
Soheil Kolouri
84
8
0
11 Dec 2021
Learning Generalized Gumbel-max Causal Mechanisms
Learning Generalized Gumbel-max Causal Mechanisms
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
72
20
0
11 Nov 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
57
12
0
24 Feb 2021
Central Limit Theorems for General Transportation Costs
Central Limit Theorems for General Transportation Costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
OT
52
28
0
12 Feb 2021
Wasserstein Embedding for Graph Learning
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
94
89
0
16 Jun 2020
PLG-IN: Pluggable Geometric Consistency Loss with Wasserstein Distance
  in Monocular Depth Estimation
PLG-IN: Pluggable Geometric Consistency Loss with Wasserstein Distance in Monocular Depth Estimation
Noriaki Hirose
Satoshi Koide
Keisuke Kawano
R. Kondo
69
7
0
03 Jun 2020
Deep Learning for Learning Graph Representations
Deep Learning for Learning Graph Representations
Wenwu Zhu
Xin Eric Wang
Peng Cui
GNNAI4CE
50
23
0
02 Jan 2020
Learning transport cost from subset correspondence
Learning transport cost from subset correspondence
Ruishan Liu
Akshay Balsubramani
James Zou
OT
54
14
0
29 Sep 2019
Interpretable ICD Code Embeddings with Self- and Mutual-Attention
  Mechanisms
Interpretable ICD Code Embeddings with Self- and Mutual-Attention Mechanisms
Dixin Luo
Hongteng Xu
Lawrence Carin
22
5
0
13 Jun 2019
Learning Embeddings into Entropic Wasserstein Spaces
Learning Embeddings into Entropic Wasserstein Spaces
Charlie Frogner
F. Mirzazadeh
Justin Solomon
74
32
0
08 May 2019
2-Wasserstein Approximation via Restricted Convex Potentials with
  Application to Improved Training for GANs
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
81
44
0
19 Feb 2019
An Entropic Optimal Transport Loss for Learning Deep Neural Networks
  under Label Noise in Remote Sensing Images
An Entropic Optimal Transport Loss for Learning Deep Neural Networks under Label Noise in Remote Sensing Images
B. Damodaran
Rémi Flamary
Vivien Seguy
Nicolas Courty
NoLa
63
40
0
02 Oct 2018
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Hongteng Xu
Wenlin Wang
Wen Liu
Lawrence Carin
MedImFedML
89
86
0
12 Sep 2018
BourGAN: Generative Networks with Metric Embeddings
BourGAN: Generative Networks with Metric Embeddings
Chang Xiao
Peilin Zhong
Changxi Zheng
GAN
88
69
0
19 May 2018
1