ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.06012
  4. Cited By
VAMPnets: Deep learning of molecular kinetics

VAMPnets: Deep learning of molecular kinetics

16 October 2017
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
ArXivPDFHTML

Papers citing "VAMPnets: Deep learning of molecular kinetics"

50 / 52 papers shown
Title
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Tuğçe Gökdemir
Jakub Rydzewski
31
1
0
31 Dec 2024
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
31
0
0
14 Oct 2024
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
Dominic Phillips
F. Cipcigan
44
3
0
28 Aug 2024
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach
Timothée Devergne
Vladimir Kostic
Michele Parrinello
Massimiliano Pontil
32
3
0
13 Jun 2024
Foundation Inference Models for Markov Jump Processes
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
42
1
0
10 Jun 2024
Dynamical systems and complex networks: A Koopman operator perspective
Dynamical systems and complex networks: A Koopman operator perspective
Stefan Klus
Natavsa Djurdjevac Conrad
16
2
0
14 May 2024
Koopman-Assisted Reinforcement Learning
Koopman-Assisted Reinforcement Learning
Preston Rozwood
Edward Mehrez
Ludger Paehler
Wen Sun
Steven L. Brunton
40
6
0
04 Mar 2024
Hierarchical deep learning-based adaptive time-stepping scheme for
  multiscale simulations
Hierarchical deep learning-based adaptive time-stepping scheme for multiscale simulations
Asif Hamid
Danish Rafiq
S. A. Nahvi
M. A. Bazaz
AI4CE
42
1
0
10 Nov 2023
Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired
  Embeddings for Nonlinear Canonical Hamiltonian Dynamics
Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired Embeddings for Nonlinear Canonical Hamiltonian Dynamics
P. Goyal
Süleyman Yıldız
P. Benner
44
3
0
26 Aug 2023
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman
  Operator
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator
Shaowu Pan
E. Kaiser
Brian M. de Silva
J. Nathan Kutz
Steven L. Brunton
21
8
0
22 Jun 2023
Neural Markov Jump Processes
Neural Markov Jump Processes
Patrick Seifner
Ramses J. Sanchez
BDL
35
7
0
31 May 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
  for Molecular Dynamics
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
M. Schreiner
Ole Winther
Simon Olsson
OOD
AI4CE
46
13
0
29 May 2023
Machine Learning for Partial Differential Equations
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
45
20
0
30 Mar 2023
Fast conformational clustering of extensive molecular dynamics
  simulation data
Fast conformational clustering of extensive molecular dynamics simulation data
Simon Hunkler
K. Diederichs
O. Kukharenko
Christine Peter
15
9
0
11 Jan 2023
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
25
59
0
11 Dec 2022
DLKoopman: A deep learning software package for Koopman theory
DLKoopman: A deep learning software package for Koopman theory
Sourya Dey
Eric K. Davis
AI4CE
21
3
0
15 Nov 2022
Rethinking skip connection model as a learnable Markov chain
Rethinking skip connection model as a learnable Markov chain
Dengsheng Chen
Jie Hu
Wenwen Qiang
Xiaoming Wei
Enhua Wu
BDL
21
1
0
30 Sep 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
29
11
0
25 Aug 2022
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
30
60
0
27 May 2022
Learning Geometrically Disentangled Representations of Protein Folding
  Simulations
Learning Geometrically Disentangled Representations of Protein Folding Simulations
N. Joseph Tatro
Payel Das
Pin-Yu Chen
Vijil Chenthamarakshan
Rongjie Lai
AI4CE
27
0
0
20 May 2022
Characterizing metastable states with the help of machine learning
Characterizing metastable states with the help of machine learning
P. Novelli
L. Bonati
Massimiliano Pontil
Michele Parrinello
16
22
0
15 Apr 2022
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
40
82
0
13 Jan 2022
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
24
30
0
12 Jan 2022
Rigorous data-driven computation of spectral properties of Koopman
  operators for dynamical systems
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
26
67
0
29 Nov 2021
Deeptime: a Python library for machine learning dynamical models from
  time series data
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
33
101
0
28 Oct 2021
Learning Stable Koopman Embeddings
Learning Stable Koopman Embeddings
Fletcher Fan
Bowen Yi
D. Rye
Guodong Shi
I. Manchester
33
33
0
13 Oct 2021
Extended dynamic mode decomposition with dictionary learning using
  neural ordinary differential equations
Extended dynamic mode decomposition with dictionary learning using neural ordinary differential equations
H. Terao
Sho Shirasaka
Hideyuki Suzuki
26
6
0
01 Oct 2021
Deep Learning Enhanced Dynamic Mode Decomposition
Deep Learning Enhanced Dynamic Mode Decomposition
D. J. Alford-Lago
C. Curtis
Alexander T. Ihler
Opal Issan
32
34
0
10 Aug 2021
Chasing Collective Variables using Autoencoders and biased trajectories
Chasing Collective Variables using Autoencoders and biased trajectories
Zineb Belkacemi
P. Gkeka
T. Lelièvre
G. Stoltz
AI4CE
6
60
0
22 Apr 2021
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster
  biomolecular simulations
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster biomolecular simulations
Alexander Brace
I. Yakushin
Heng Ma
Anda Trifan
T. Munson
Ian Foster
A. Ramanathan
Hyungro Lee
Matteo Turilli
S. Jha
AI4CE
27
19
0
10 Apr 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
46
392
0
24 Feb 2021
CKNet: A Convolutional Neural Network Based on Koopman Operator for
  Modeling Latent Dynamics from Pixels
CKNet: A Convolutional Neural Network Based on Koopman Operator for Modeling Latent Dynamics from Pixels
Yongqian Xiao
Xin Xu
Yifei Shi
16
9
0
19 Feb 2021
Artificial intelligence techniques for integrative structural biology of
  intrinsically disordered proteins
Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins
A. Ramanathan
Henglong Ma
Akash Parvatikar
C. Chennubhotla
AI4CE
23
40
0
01 Dec 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with
  a Kernel Approach
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
8
46
0
04 May 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yuqing Yang
Y. Gao
AI4CE
37
8
0
25 Apr 2020
Autonomous discovery in the chemical sciences part II: Outlook
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
29
171
0
30 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations
  Using Data
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Zhen Chen
Kailiang Wu
D. Xiu
22
3
0
05 Mar 2020
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
109
49
0
27 Feb 2020
Interpretable Embeddings From Molecular Simulations Using Gaussian
  Mixture Variational Autoencoders
Interpretable Embeddings From Molecular Simulations Using Gaussian Mixture Variational Autoencoders
Yasemin Bozkurt Varolgunes
T. Bereau
J. F. Rudzinski
DRL
12
42
0
22 Dec 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
16
642
0
07 Nov 2019
Deep Learning Models for Global Coordinate Transformations that
  Linearize PDEs
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs
Craig Gin
Bethany Lusch
Steven L. Brunton
J. Nathan Kutz
13
39
0
07 Nov 2019
Data-driven approximation of the Koopman generator: Model reduction,
  system identification, and control
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
23
221
0
23 Sep 2019
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode
  Discovery in Dynamical Systems
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems
Wei Chen
Hythem Sidky
Andrew L. Ferguson
25
36
0
02 Jun 2019
Structure-preserving Method for Reconstructing Unknown Hamiltonian
  Systems from Trajectory Data
Structure-preserving Method for Reconstructing Unknown Hamiltonian Systems from Trajectory Data
Kailiang Wu
Tong Qin
D. Xiu
21
31
0
24 May 2019
Dimensionality Reduction of Complex Metastable Systems via Kernel
  Embeddings of Transition Manifolds
Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds
A. Bittracher
Stefan Klus
B. Hamzi
P. Koltai
Christof Schütte
19
22
0
18 Apr 2019
Time Series Source Separation using Dynamic Mode Decomposition
Time Series Source Separation using Dynamic Mode Decomposition
Arvind Prasadan
R. Nadakuditi
AI4TS
21
6
0
04 Mar 2019
Machine Learning for Molecular Dynamics on Long Timescales
Machine Learning for Molecular Dynamics on Long Timescales
Frank Noé
AI4CE
23
32
0
18 Dec 2018
Data Driven Governing Equations Approximation Using Deep Neural Networks
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
34
270
0
13 Nov 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
27
1,218
0
27 Dec 2017
Variational Encoding of Complex Dynamics
Variational Encoding of Complex Dynamics
Carlos X. Hernández
H. Wayment-Steele
Mohammad M. Sultan
B. Husic
Vijay S. Pande
AI4CE
25
138
0
23 Nov 2017
12
Next