ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.05468
  4. Cited By
Generalization in Deep Learning

Generalization in Deep Learning

16 October 2017
Kenji Kawaguchi
L. Kaelbling
Yoshua Bengio
    ODL
ArXivPDFHTML

Papers citing "Generalization in Deep Learning"

33 / 83 papers shown
Title
Coherent Gradients: An Approach to Understanding Generalization in
  Gradient Descent-based Optimization
Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
S. Chatterjee
ODL
OOD
11
48
0
25 Feb 2020
Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
  Networks
Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks
Yehui Tang
Yunhe Wang
Yixing Xu
Boxin Shi
Chao Xu
Chunjing Xu
Chang Xu
14
38
0
23 Feb 2020
Improving Model Robustness Using Causal Knowledge
Improving Model Robustness Using Causal Knowledge
T. Kyono
M. Schaar
OOD
22
12
0
27 Nov 2019
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Yehui Tang
Shan You
Chang Xu
Boxin Shi
Chao Xu
21
11
0
13 Jul 2019
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk
  Minimization
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
19
62
0
09 Jul 2019
Orthogonal Deep Neural Networks
Orthogonal Deep Neural Networks
Kui Jia
Shuai Li
Yuxin Wen
Tongliang Liu
Dacheng Tao
34
131
0
15 May 2019
Stability and Generalization of Graph Convolutional Neural Networks
Stability and Generalization of Graph Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
MLT
30
153
0
03 May 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
40
1,650
0
13 Feb 2019
Capacity Control of ReLU Neural Networks by Basis-path Norm
Capacity Control of ReLU Neural Networks by Basis-path Norm
Shuxin Zheng
Qi Meng
Huishuai Zhang
Wei-neng Chen
Nenghai Yu
Tie-Yan Liu
24
23
0
19 Sep 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
27
59
0
10 Sep 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm,
  Optimality, and Generalization
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Understanding training and generalization in deep learning by Fourier
  analysis
Understanding training and generalization in deep learning by Fourier analysis
Zhi-Qin John Xu
AI4CE
21
92
0
13 Aug 2018
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
FedML
ELM
19
405
0
01 Jun 2018
Topological Data Analysis of Decision Boundaries with Application to
  Model Selection
Topological Data Analysis of Decision Boundaries with Application to Model Selection
K. Ramamurthy
Kush R. Varshney
Krishnan Mody
17
40
0
25 May 2018
Data-Dependent Coresets for Compressing Neural Networks with
  Applications to Generalization Bounds
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
19
79
0
15 Apr 2018
The Loss Surface of XOR Artificial Neural Networks
The Loss Surface of XOR Artificial Neural Networks
D. Mehta
Xiaojun Zhao
Edgar A. Bernal
D. Wales
34
19
0
06 Apr 2018
Posterior Concentration for Sparse Deep Learning
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
30
88
0
24 Mar 2018
A Walk with SGD
A Walk with SGD
Chen Xing
Devansh Arpit
Christos Tsirigotis
Yoshua Bengio
24
118
0
24 Feb 2018
L2-Nonexpansive Neural Networks
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
19
74
0
22 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
23
630
0
14 Feb 2018
Learning Compact Neural Networks with Regularization
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
38
39
0
05 Feb 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
98
1,844
0
28 Dec 2017
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
Deep Learning Scaling is Predictable, Empirically
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
40
711
0
01 Dec 2017
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
47
2,078
0
14 Nov 2017
SGD Learns Over-parameterized Networks that Provably Generalize on
  Linearly Separable Data
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
48
276
0
27 Oct 2017
Rethinking generalization requires revisiting old ideas: statistical
  mechanics approaches and complex learning behavior
Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior
Charles H. Martin
Michael W. Mahoney
AI4CE
30
62
0
26 Oct 2017
Global optimality conditions for deep neural networks
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Deep Semi-Random Features for Nonlinear Function Approximation
Deep Semi-Random Features for Nonlinear Function Approximation
Kenji Kawaguchi
Bo Xie
Vikas Verma
Le Song
21
15
0
28 Feb 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
125
577
0
27 Feb 2015
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
12