ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.04295
19
92

Understanding training and generalization in deep learning by Fourier analysis

13 August 2018
Zhi-Qin John Xu
    AI4CE
ArXivPDFHTML
Abstract

Background: It is still an open research area to theoretically understand why Deep Neural Networks (DNNs)---equipped with many more parameters than training data and trained by (stochastic) gradient-based methods---often achieve remarkably low generalization error. Contribution: We study DNN training by Fourier analysis. Our theoretical framework explains: i) DNN with (stochastic) gradient-based methods often endows low-frequency components of the target function with a higher priority during the training; ii) Small initialization leads to good generalization ability of DNN while preserving the DNN's ability to fit any function. These results are further confirmed by experiments of DNNs fitting the following datasets, that is, natural images, one-dimensional functions and MNIST dataset.

View on arXiv
Comments on this paper