Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.00935
Cited By
Interpretable Convolutional Neural Networks
2 October 2017
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Convolutional Neural Networks"
37 / 37 papers shown
Title
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
265
33
0
30 Aug 2024
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
A. Newson
Florence dÁlché-Buc
SSL
122
1
0
01 Jul 2024
Interpretability-Aware Vision Transformer
Yao Qiang
Chengyin Li
Prashant Khanduri
D. Zhu
ViT
218
8
0
14 Sep 2023
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
104
3
0
24 Aug 2023
Tackling COVID-19 through Responsible AI Innovation: Five Steps in the Right Direction
David Leslie
172
67
0
15 Aug 2020
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
135
819
0
02 Feb 2018
Examining CNN Representations with respect to Dataset Bias
Quanshi Zhang
Wenguan Wang
Song-Chun Zhu
SSL
FAtt
51
104
0
29 Oct 2017
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
174
4,596
0
26 Oct 2017
Interpreting CNN Knowledge via an Explanatory Graph
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
FAtt
GNN
SSL
56
242
0
05 Aug 2017
Teaching Compositionality to CNNs
Austin Stone
Hua-Yan Wang
Michael Stark
Yi Liu
D. Phoenix
Dileep George
CoGe
47
54
0
14 Jun 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,516
1
19 Apr 2017
Explaining the Unexplained: A CLass-Enhanced Attentive Response (CLEAR) Approach to Understanding Deep Neural Networks
Devinder Kumar
Alexander Wong
Graham W. Taylor
60
61
0
13 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,520
0
11 Apr 2017
Mining Object Parts from CNNs via Active Question-Answering
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
50
25
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
208
2,894
0
14 Mar 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
120
589
0
10 Mar 2017
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
50
70
0
14 Nov 2016
Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration
Himabindu Lakkaraju
Ece Kamar
R. Caruana
Eric Horvitz
49
152
0
28 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,003
0
07 Oct 2016
Towards Transparent AI Systems: Interpreting Visual Question Answering Models
Yash Goyal
Akrit Mohapatra
Devi Parikh
Dhruv Batra
42
74
0
31 Aug 2016
Harnessing Deep Neural Networks with Logic Rules
Zhiting Hu
Xuezhe Ma
Zhengzhong Liu
Eduard H. Hovy
Eric Xing
AI4CE
NAI
56
614
0
21 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,319
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
65
665
0
09 Jun 2015
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
72
149
0
03 Jun 2015
Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks
Marcel Simon
E. Rodner
69
412
0
30 Apr 2015
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
137
1,283
0
22 Dec 2014
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
121
1,962
0
26 Nov 2014
Part Detector Discovery in Deep Convolutional Neural Networks
Marcel Simon
E. Rodner
Joachim Denzler
ObjD
62
76
0
12 Nov 2014
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
231
8,336
0
06 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts
Xianjie Chen
Roozbeh Mottaghi
Xiaobai Liu
Sanja Fidler
R. Urtasun
Alan Yuille
98
640
0
08 Jun 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
Unsupervised Discovery of Mid-Level Discriminative Patches
Saurabh Singh
Abhinav Gupta
Alexei A. Efros
OCL
78
590
0
14 May 2012
1