Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.00211
Cited By
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
30 September 2017
E. Weinan
Ting Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems"
50 / 235 papers shown
Title
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
31
12
0
28 Sep 2022
Deep learning for gradient flows using the Brezis-Ekeland principle
Laura Carini
Max Jensen
R. Nürnberg
28
0
0
28 Sep 2022
Neural Networks Based on Power Method and Inverse Power Method for Solving Linear Eigenvalue Problems
Qihong Yang
Yangtao Deng
Yu Yang
Qiaolin He
Shiquan Zhang
24
13
0
22 Sep 2022
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
31
21
0
20 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
36
6
0
07 Sep 2022
Semi-analytic PINN methods for singularly perturbed boundary value problems
G. Gie
Youngjoon Hong
Chang-Yeol Jung
PINN
13
5
0
19 Aug 2022
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
29
51
0
26 Jul 2022
Learning Relaxation for Multigrid
Dmitry Kuznichov
AI4CE
24
1
0
25 Jul 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
29
0
0
21 Jul 2022
The Deep Ritz Method for Parametric
p
p
p
-Dirichlet Problems
A. Kaltenbach
Marius Zeinhofer
27
3
0
05 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
24
5
0
03 Jul 2022
Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
AI4CE
19
0
0
01 Jul 2022
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
Senwei Liang
Haizhao Yang
34
18
0
21 Jun 2022
Critical Investigation of Failure Modes in Physics-informed Neural Networks
S. Basir
Inanc Senocak
PINN
AI4CE
12
18
0
20 Jun 2022
Unsupervised Learning of the Total Variation Flow
T. G. Grossmann
Sören Dittmer
Yury Korolev
Carola-Bibiane Schönlieb
33
3
0
09 Jun 2022
A Neural Network Approach for Homogenization of Multiscale Problems
Jihun Han
Yoonsang Lee
35
13
0
04 Jun 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
36
6
0
28 May 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
47
145
0
26 May 2022
Towards Size-Independent Generalization Bounds for Deep Operator Nets
Pulkit Gopalani
Sayar Karmakar
Dibyakanti Kumar
Anirbit Mukherjee
AI4CE
24
5
0
23 May 2022
Revisiting PINNs: Generative Adversarial Physics-informed Neural Networks and Point-weighting Method
Wensheng Li
Chao Zhang
Chuncheng Wang
Hanting Guan
Dacheng Tao
DiffM
PINN
18
12
0
18 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
38
7
0
15 May 2022
BI-GreenNet: Learning Green's functions by boundary integral network
Guochang Lin
Fu-jun Chen
Pipi Hu
Xiang Chen
Junqing Chen
Jun Wang
Zuoqiang Shi
34
20
0
28 Apr 2022
Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
Naxian Ni
S. Dong
29
20
0
24 Apr 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
21
1
0
18 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
34
7
0
15 Apr 2022
The Mathematics of Artificial Intelligence
Gitta Kutyniok
24
0
0
16 Mar 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
32
58
0
16 Mar 2022
Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
36
23
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
28
15
0
28 Feb 2022
Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations
Benwei Wu
O. Hennigh
Jan Kautz
S. Choudhry
Wonmin Byeon
MLAU
AI4CE
14
11
0
24 Feb 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
25
158
0
12 Feb 2022
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning
Chengping Rao
Pu Ren
Yang Liu
Hao Sun
AI4CE
45
28
0
28 Jan 2022
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
47
17
0
24 Jan 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Tao Luo
Yaoyu Zhang
FaML
35
66
0
19 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
31
1,190
0
14 Jan 2022
De Rham compatible Deep Neural Network FEM
M. Longo
J. Opschoor
Nico Disch
Christoph Schwab
Jakob Zech
38
8
0
14 Jan 2022
Nonlocal Kernel Network (NKN): a Stable and Resolution-Independent Deep Neural Network
Huaiqian You
Yue Yu
M. DÉlia
T. Gao
Stewart Silling
29
70
0
06 Jan 2022
DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations
Keju Tang
Xiaoliang Wan
Chao Yang
32
107
0
28 Dec 2021
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
36
25
0
28 Dec 2021
Exponential Convergence of Deep Operator Networks for Elliptic Partial Differential Equations
C. Marcati
Christoph Schwab
27
38
0
15 Dec 2021
Subspace Decomposition based DNN algorithm for elliptic type multi-scale PDEs
Xi-An Li
Z. Xu
Lei Zhang
27
27
0
10 Dec 2021
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
38
27
0
07 Dec 2021
A coarse space acceleration of deep-DDM
Valentin Mercier
Serge Gratton
Pierre Boudier
AI4CE
33
10
0
07 Dec 2021
Hierarchical Learning to Solve Partial Differential Equations Using Physics-Informed Neural Networks
Jihun Han
Yoonsang Lee
AI4CE
24
10
0
02 Dec 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
386
0
06 Nov 2021
Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks
Xiang Huang
Hongsheng Liu
Beiji Shi
Zidong Wang
Kan Yang
...
Jing Zhou
Fan Yu
Bei Hua
Lei Chen
Bin Dong
19
20
0
02 Nov 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
Polynomial-Spline Neural Networks with Exact Integrals
Jonas A. Actor
Andrew Huang
N. Trask
33
1
0
26 Oct 2021
Computing the Invariant Distribution of Randomly Perturbed Dynamical Systems Using Deep Learning
Bo Lin
Qianxiao Li
W. Ren
29
8
0
22 Oct 2021
Solving Image PDEs with a Shallow Network
Pascal Getreuer
P. Milanfar
Xiyang Luo
39
1
0
15 Oct 2021
Previous
1
2
3
4
5
Next