ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.00211
  4. Cited By
The Deep Ritz method: A deep learning-based numerical algorithm for
  solving variational problems

The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems

30 September 2017
E. Weinan
Ting Yu
ArXivPDFHTML

Papers citing "The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems"

50 / 235 papers shown
Title
Computing excited states of molecules using normalizing flows
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
38
7
0
31 Aug 2023
Learning Specialized Activation Functions for Physics-informed Neural
  Networks
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
21
12
0
08 Aug 2023
Predicting and explaining nonlinear material response using deep
  Physically Guided Neural Networks with Internal Variables
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
27
1
0
07 Aug 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
28
6
0
06 Jul 2023
Accelerated primal-dual methods with enlarged step sizes and operator
  learning for nonsmooth optimal control problems
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
19
2
0
01 Jul 2023
A Finite Expression Method for Solving High-Dimensional Committor
  Problems
A Finite Expression Method for Solving High-Dimensional Committor Problems
Zezheng Song
M. Cameron
Haizhao Yang
20
6
0
21 Jun 2023
Deep Stochastic Mechanics
Deep Stochastic Mechanics
Elena Orlova
Aleksei Ustimenko
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
DiffM
51
0
0
31 May 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial
  Differential Equations
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
37
4
0
21 May 2023
Score Operator Newton transport
Score Operator Newton transport
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
OT
25
1
0
16 May 2023
Theoretical Analysis of Inductive Biases in Deep Convolutional Networks
Theoretical Analysis of Inductive Biases in Deep Convolutional Networks
Zihao Wang
Lei Wu
28
20
0
15 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
A Stable and Scalable Method for Solving Initial Value PDEs with Neural
  Networks
A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks
Marc Finzi
Andres Potapczynski
M. Choptuik
A. Wilson
26
12
0
28 Apr 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
28
10
0
27 Apr 2023
A Survey on Solving and Discovering Differential Equations Using Deep
  Neural Networks
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
45
5
0
26 Apr 2023
In-Context Operator Learning with Data Prompts for Differential Equation
  Problems
In-Context Operator Learning with Data Prompts for Differential Equation Problems
Liu Yang
Siting Liu
Tingwei Meng
Stanley J. Osher
40
60
0
17 Apr 2023
The R-mAtrIx Net
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
24
5
0
14 Apr 2023
EPINN-NSE: Enhanced Physics-Informed Neural Networks for Solving
  Navier-Stokes Equations
EPINN-NSE: Enhanced Physics-Informed Neural Networks for Solving Navier-Stokes Equations
Ayoub Farkane
Mounir Ghogho
M. Oudani
M. Boutayeb
PINN
28
5
0
07 Apr 2023
Laplace-fPINNs: Laplace-based fractional physics-informed neural
  networks for solving forward and inverse problems of subdiffusion
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
32
2
0
03 Apr 2023
Multilevel CNNs for Parametric PDEs
Multilevel CNNs for Parametric PDEs
Cosmas Heiß
Ingo Gühring
Martin Eigel
AI4CE
30
8
0
01 Apr 2023
Efficient Sampling of Stochastic Differential Equations with Positive
  Semi-Definite Models
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
31
1
0
30 Mar 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
  PINNs
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
36
9
0
28 Mar 2023
GNN-based physics solver for time-independent PDEs
GNN-based physics solver for time-independent PDEs
R. J. Gladstone
H. Rahmani
V. Suryakumar
Hadi Meidani
M. DÉlia
A. Zareei
AI4CE
25
15
0
28 Mar 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
  non-intrusive Meta-learning of parametric PDEs
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
37
24
0
27 Mar 2023
Error Analysis of Physics-Informed Neural Networks for Approximating
  Dynamic PDEs of Second Order in Time
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
26
1
0
22 Mar 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
18
5
0
25 Feb 2023
Minimax Instrumental Variable Regression and $L_2$ Convergence
  Guarantees without Identification or Closedness
Minimax Instrumental Variable Regression and L2L_2L2​ Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
36
14
0
10 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with
  re-sampling and subset simulation
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
37
18
0
03 Feb 2023
Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at
  Irregularly Spaced Data
Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at Irregularly Spaced Data
Jonathan W. Siegel
19
2
0
02 Feb 2023
Experimental observation on a low-rank tensor model for eigenvalue
  problems
Experimental observation on a low-rank tensor model for eigenvalue problems
Jun Hu
Pengzhan Jin
19
2
0
01 Feb 2023
KoopmanLab: machine learning for solving complex physics equations
KoopmanLab: machine learning for solving complex physics equations
Wei Xiong
Muyuan Ma
Xiaomeng Huang
Ziyang Zhang
Pei Sun
Yang Tian
AI4CE
26
13
0
03 Jan 2023
Transfer Learning Enhanced DeepONet for Long-Time Prediction of
  Evolution Equations
Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations
Wuzhe Xu
Yulong Lu
Li Wang
32
33
0
09 Dec 2022
Physics-guided Data Augmentation for Learning the Solution Operator of
  Linear Differential Equations
Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations
Yemo Li
Yiwen Pang
Bin Shan
AI4CE
31
3
0
08 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related
  Parameter Identification Problems
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
Fourier Continuation for Exact Derivative Computation in
  Physics-Informed Neural Operators
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators
Ha Maust
Zong-Yi Li
Yixuan Wang
Daniel Leibovici
O. Bruno
T. Hou
Anima Anandkumar
AI4CE
29
11
0
29 Nov 2022
Bayesian Inversion with Neural Operator (BINO) for Modeling
  Subdiffusion: Forward and Inverse Problems
Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems
Xiongbin Yan
Z. Xu
Zheng Ma
14
2
0
22 Nov 2022
Neural tangent kernel analysis of PINN for advection-diffusion equation
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
35
0
0
21 Nov 2022
Convergence analysis of unsupervised Legendre-Galerkin neural networks
  for linear second-order elliptic PDEs
Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs
Seungchan Ko
S. Yun
Youngjoon Hong
30
5
0
16 Nov 2022
Gradient-enhanced deep neural network approximations
Gradient-enhanced deep neural network approximations
Xiaodong Feng
Li Zeng
UQCV
34
5
0
08 Nov 2022
A Deep Double Ritz Method (D$^2$RM) for solving Partial Differential
  Equations using Neural Networks
A Deep Double Ritz Method (D2^22RM) for solving Partial Differential Equations using Neural Networks
C. Uriarte
David Pardo
I. Muga
J. Muñoz‐Matute
49
18
0
07 Nov 2022
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
44
81
0
02 Nov 2022
Convergence analysis of a quasi-Monte Carlo-based deep learning
  algorithm for solving partial differential equations
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
29
2
0
28 Oct 2022
Neuro-symbolic partial differential equation solver
Neuro-symbolic partial differential equation solver
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
S. Choudhry
Frédéric Gibou
36
1
0
25 Oct 2022
JAX-DIPS: Neural bootstrapping of finite discretization methods and
  application to elliptic problems with discontinuities
JAX-DIPS: Neural bootstrapping of finite discretization methods and application to elliptic problems with discontinuities
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
Frédéric Gibou
21
8
0
25 Oct 2022
Neural Network Approximations of PDEs Beyond Linearity: A
  Representational Perspective
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
$r-$Adaptive Deep Learning Method for Solving Partial Differential
  Equations
r−r-r−Adaptive Deep Learning Method for Solving Partial Differential Equations
Ángel J. Omella
David Pardo
AI4CE
31
4
0
19 Oct 2022
A cusp-capturing PINN for elliptic interface problems
A cusp-capturing PINN for elliptic interface problems
Yu-Hau Tseng
Te-Sheng Lin
Wei-Fan Hu
M. Lai
16
33
0
16 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex
  PDEs
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
23
17
0
06 Oct 2022
Limitations of neural network training due to numerical instability of
  backpropagation
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
40
3
0
03 Oct 2022
Failure-informed adaptive sampling for PINNs
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
79
0
01 Oct 2022
Scaling transformation of the multimode nonlinear Schrödinger equation
  for physics-informed neural networks
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
29
0
0
29 Sep 2022
Previous
12345
Next