ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.07536
  4. Cited By
A Zero-Positive Learning Approach for Diagnosing Software Performance
  Regressions

A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions

21 September 2017
Mejbah Alam
Justin Emile Gottschlich
Nesime Tatbul
Javier S. Turek
Tim Mattson
A. Muzahid
ArXivPDFHTML

Papers citing "A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions"

5 / 5 papers shown
Title
The Three Pillars of Machine Programming
The Three Pillars of Machine Programming
Justin Emile Gottschlich
Armando Solar-Lezama
Nesime Tatbul
Michael Carbin
Martin Rinard
Regina Barzilay
Saman P. Amarasinghe
J. Tenenbaum
Tim Mattson
65
63
0
20 Mar 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic
  Corrections
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
88
63
0
21 Feb 2018
Greenhouse: A Zero-Positive Machine Learning System for Time-Series
  Anomaly Detection
Greenhouse: A Zero-Positive Machine Learning System for Time-Series Anomaly Detection
T. Lee
Justin Emile Gottschlich
Nesime Tatbul
Eric Metcalf
S. Zdonik
AI4CE
32
37
0
09 Jan 2018
AI Programmer: Autonomously Creating Software Programs Using Genetic
  Algorithms
AI Programmer: Autonomously Creating Software Programs Using Genetic Algorithms
Kory Becker
Justin Emile Gottschlich
25
29
0
17 Sep 2017
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OOD
DRL
64
502
0
18 Nov 2012
1