Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.05289
Cited By
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
15 September 2017
P. Petersen
Felix Voigtländer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal approximation of piecewise smooth functions using deep ReLU neural networks"
29 / 79 papers shown
Title
Approximation of Smoothness Classes by Deep Rectifier Networks
Mazen Ali
A. Nouy
14
9
0
30 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Hierarchically Compositional Tasks and Deep Convolutional Networks
Arturo Deza
Q. Liao
Andrzej Banburski
T. Poggio
BDL
OOD
25
2
0
24 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
19
104
0
11 May 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
22
15
0
03 Mar 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Uniform error estimates for artificial neural network approximations for heat equations
Lukas Gonon
Philipp Grohs
Arnulf Jentzen
David Kofler
David Siska
29
34
0
20 Nov 2019
Deep Learning for space-variant deconvolution in galaxy surveys
F. Sureau
Alexis Lechat
Jean-Luc Starck
3DPC
22
21
0
01 Nov 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
29
33
0
11 Aug 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
22
121
0
22 Jun 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
23
182
0
13 Jun 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
40
327
0
21 May 2019
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
20
197
0
31 Mar 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
18
158
0
07 Mar 2019
A lattice-based approach to the expressivity of deep ReLU neural networks
V. Corlay
J. Boutros
P. Ciblat
L. Brunel
13
4
0
28 Feb 2019
Nonlinear Approximation via Compositions
Zuowei Shen
Haizhao Yang
Shijun Zhang
26
92
0
26 Feb 2019
Error bounds for approximations with deep ReLU neural networks in
W
s
,
p
W^{s,p}
W
s
,
p
norms
Ingo Gühring
Gitta Kutyniok
P. Petersen
22
199
0
21 Feb 2019
The Oracle of DLphi
Dominik Alfke
W. Baines
J. Blechschmidt
Mauricio J. del Razo Sarmina
Amnon Drory
...
L. Thesing
Philipp Trunschke
Johannes von Lindheim
David Weber
Melanie Weber
39
0
0
17 Jan 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
16
207
0
08 Jan 2019
A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients
Arnulf Jentzen
Diyora Salimova
Timo Welti
AI4CE
16
116
0
19 Sep 2018
A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philippe von Wurstemberger
16
167
0
07 Sep 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
27
78
0
13 Jun 2018
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
30
88
0
24 Mar 2018
Deep Neural Networks Learn Non-Smooth Functions Effectively
Masaaki Imaizumi
Kenji Fukumizu
20
123
0
13 Feb 2018
Optimal approximation of continuous functions by very deep ReLU networks
Dmitry Yarotsky
27
294
0
10 Feb 2018
Optimal Approximation with Sparsely Connected Deep Neural Networks
Helmut Bölcskei
Philipp Grohs
Gitta Kutyniok
P. Petersen
30
255
0
04 May 2017
Benefits of depth in neural networks
Matus Telgarsky
151
602
0
14 Feb 2016
Previous
1
2