ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02023
  4. Cited By
CausalGAN: Learning Causal Implicit Generative Models with Adversarial
  Training

CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training

6 September 2017
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
    GAN
    OOD
ArXivPDFHTML

Papers citing "CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training"

50 / 60 papers shown
Title
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
27
0
0
16 Oct 2024
Consistency of Neural Causal Partial Identification
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
34
0
0
24 May 2024
Causal Diffusion Autoencoders: Toward Counterfactual Generation via
  Diffusion Probabilistic Models
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Aneesh Komanduri
Chengli Zhao
Feng Chen
Xintao Wu
CML
DiffM
40
5
0
27 Apr 2024
Benchmarking Counterfactual Image Generation
Benchmarking Counterfactual Image Generation
Thomas Melistas
Nikos Spyrou
Nefeli Gkouti
Pedro Sanchez
Athanasios Vlontzos
Yannis Panagakis
G. Papanastasiou
Sotirios A. Tsaftaris
EGVM
CML
51
7
0
29 Mar 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for
  Spatiotemporal Time Series Imputation
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
37
7
0
18 Mar 2024
Robust Emotion Recognition in Context Debiasing
Robust Emotion Recognition in Context Debiasing
Dingkang Yang
Kun Yang
Mingcheng Li
Shunli Wang
Shuai Wang
Lihua Zhang
43
15
0
09 Mar 2024
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Hangtong Xu
Yuanbo Xu
Yongjian Yang
Fuzhen Zhuang
CML
77
0
0
02 Nov 2023
Counterfactual Fairness for Predictions using Generative Adversarial
  Networks
Counterfactual Fairness for Predictions using Generative Adversarial Networks
Yuchen Ma
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
36
2
0
26 Oct 2023
Data Augmentations for Improved (Large) Language Model Generalization
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
Suchi Saria
David M. Blei
OOD
CML
34
7
0
19 Oct 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
40
36
0
27 Jun 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
26
1
0
20 Jun 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming Liu
Bryon Aragam
Liam Solus
CML
32
3
0
31 May 2023
Optimal transport and Wasserstein distances for causal models
Optimal transport and Wasserstein distances for causal models
Patrick Cheridito
Stephan Eckstein
OT
40
7
0
24 Mar 2023
Towards Learning and Explaining Indirect Causal Effects in Neural
  Networks
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
33
0
0
24 Mar 2023
Towards Composable Distributions of Latent Space Augmentations
Towards Composable Distributions of Latent Space Augmentations
Omead Brandon Pooladzandi
Jeffrey Q. Jiang
Sunay Bhat
Gregory Pottie
DRL
31
0
0
06 Mar 2023
Causal Deep Learning
Causal Deep Learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
AI4CE
21
25
0
03 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
On the causality-preservation capabilities of generative modelling
On the causality-preservation capabilities of generative modelling
Yves-Cédric Bauwelinckx
Jan Dhaene
Tim Verdonck
Milan van den Heuvel
CML
AI4CE
38
0
0
03 Jan 2023
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
43
1
0
22 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
38
11
0
07 Nov 2022
Learning Latent Structural Causal Models
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
30
7
0
24 Oct 2022
Causal Structural Hypothesis Testing and Data Generation Models
Causal Structural Hypothesis Testing and Data Generation Models
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Sunay Bhat
Gregory Pottie
CML
40
1
0
20 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
45
32
0
30 Sep 2022
Fair mapping
Fair mapping
Sébastien Gambs
Rosin Claude Ngueveu
42
0
0
01 Sep 2022
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
36
12
0
23 Aug 2022
De-Biasing Generative Models using Counterfactual Methods
De-Biasing Generative Models using Counterfactual Methods
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Gregory Pottie
CML
46
7
0
04 Jul 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
29
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
DÁRTAGNAN: Counterfactual Video Generation
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGen
CML
MedIm
30
19
0
03 Jun 2022
Principled Knowledge Extrapolation with GANs
Principled Knowledge Extrapolation with GANs
Ruili Feng
Jie Xiao
Kecheng Zheng
Deli Zhao
Jingren Zhou
Qibin Sun
Zhengjun Zha
62
8
0
21 May 2022
Do learned representations respect causal relationships?
Do learned representations respect causal relationships?
Lan Wang
Vishnu Boddeti
NAI
CML
OOD
42
6
0
02 Apr 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for
  multidimensional features
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
44
3
0
25 Jan 2022
A Causal Lens for Controllable Text Generation
A Causal Lens for Controllable Text Generation
Zhiting Hu
Erran L. Li
45
59
0
22 Jan 2022
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
36
21
0
10 Dec 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
36
13
0
24 Nov 2021
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
  Networks
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
A. Saha
Trent Kyono
J. Linmans
M. Schaar
CML
37
105
0
25 Oct 2021
A Taxonomy for Inference in Causal Model Families
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
Devendra Singh Dhami
Kristian Kersting
24
1
0
22 Oct 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box
  Model Explanation
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
40
10
0
09 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
Learning latent causal graphs via mixture oracles
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
33
47
0
29 Jun 2021
Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial
  Networks
Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial Networks
Bingyang Wen
Luis Oliveros Colon
K. P. Subbalakshmi
R. Chandramouli
CML
GAN
44
18
0
21 Apr 2021
Causal Attention for Vision-Language Tasks
Causal Attention for Vision-Language Tasks
Xu Yang
Hanwang Zhang
Guojun Qi
Jianfei Cai
CML
28
149
0
05 Mar 2021
Counterfactual Generative Networks
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
43
124
0
15 Jan 2021
Model-Based Deep Learning
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
30
317
0
15 Dec 2020
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals
Saloni Dash
V. Balasubramanian
Amit Sharma
CML
27
64
0
17 Sep 2020
A causal view of compositional zero-shot recognition
A causal view of compositional zero-shot recognition
Yuval Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
118
0
25 Jun 2020
Unbiased Auxiliary Classifier GANs with MINE
Unbiased Auxiliary Classifier GANs with MINE
Ligong Han
Anastasis Stathopoulos
Tao Xue
Dimitris N. Metaxas
12
13
0
13 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
33
229
0
11 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
A theory of independent mechanisms for extrapolation in generative
  models
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
20
25
0
01 Apr 2020
Learning Generative Models of Tissue Organization with Supervised GANs
Learning Generative Models of Tissue Organization with Supervised GANs
Ligong Han
R. Murphy
Deva Ramanan
GAN
MedIm
26
19
0
31 Mar 2020
12
Next