Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.07469
Cited By
DGM: A deep learning algorithm for solving partial differential equations
24 August 2017
Justin A. Sirignano
K. Spiliopoulos
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DGM: A deep learning algorithm for solving partial differential equations"
30 / 30 papers shown
Title
Fractional-Boundary-Regularized Deep Galerkin Method for Variational Inequalities in Mixed Optimal Stopping and Control
Yun Zhao
Harry Zheng
16
0
0
25 May 2025
A brief review of the Deep BSDE method for solving high-dimensional partial differential equations
Jiequn Han
Arnulf Jentzen
Weinan E
AI4CE
40
0
0
07 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
99
0
0
25 Apr 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
78
0
0
21 Feb 2025
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
Yuan Chen
Abdul Khaliq
Khaled M. Furati
AI4CE
119
0
0
20 Feb 2025
DGenNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
76
1
0
10 Feb 2025
Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
Yueyang Wang
Kejun Tang
Xili Wang
Xiaoliang Wan
Weiqing Ren
Chao Yang
59
0
0
28 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
97
1
0
15 Dec 2024
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
335
8
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
62
2
0
04 Oct 2024
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
61
4
0
03 Oct 2024
Cauchy activation function and XNet
Xin Li
Zhihong Xia
Hongkun Zhang
109
5
0
28 Sep 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
80
0
0
21 Aug 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
81
2
0
04 Jul 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
63
7
0
08 May 2024
A score-based particle method for homogeneous Landau equation
Yan Huang
Li Wang
OT
72
5
0
08 May 2024
A time-stepping deep gradient flow method for option pricing in (rough) diffusion models
A. Papapantoleon
Jasper Rou
49
2
0
01 Mar 2024
A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models
E. Georgoulis
A. Papapantoleon
Costas Smaragdakis
57
7
0
12 Jan 2024
Generating synthetic data for neural operators
Erisa Hasani
Rachel A. Ward
AI4CE
90
8
0
04 Jan 2024
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
61
8
0
11 Feb 2023
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
54
611
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
65
912
0
28 Nov 2017
Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
C. Beck
Weinan E
Arnulf Jentzen
43
329
0
18 Sep 2017
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
P. Petersen
Felix Voigtländer
162
473
0
15 Sep 2017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
107
790
0
15 Jun 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
122
153
0
17 Apr 2017
Stochastic Gradient Descent in Continuous Time
Justin A. Sirignano
K. Spiliopoulos
28
57
0
17 Nov 2016
Accelerating Eulerian Fluid Simulation With Convolutional Networks
Jonathan Tompson
Kristofer Schlachter
Pablo Sprechmann
Ken Perlin
75
530
0
13 Jul 2016
Training Very Deep Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
96
1,675
0
22 Jul 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
815
149,474
0
22 Dec 2014
1