Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.07469
Cited By
DGM: A deep learning algorithm for solving partial differential equations
24 August 2017
Justin A. Sirignano
K. Spiliopoulos
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DGM: A deep learning algorithm for solving partial differential equations"
21 / 21 papers shown
Title
Fractional-Boundary-Regularized Deep Galerkin Method for Variational Inequalities in Mixed Optimal Stopping and Control
Yun Zhao
Harry Zheng
11
0
0
25 May 2025
A brief review of the Deep BSDE method for solving high-dimensional partial differential equations
Jiequn Han
Arnulf Jentzen
Weinan E
AI4CE
38
0
0
07 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
97
0
0
25 Apr 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
76
0
0
21 Feb 2025
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
Yuan Chen
Abdul Khaliq
Khaled M. Furati
AI4CE
112
0
0
20 Feb 2025
DGenNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
74
1
0
10 Feb 2025
Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
Yueyang Wang
Kejun Tang
Xili Wang
Xiaoliang Wan
Weiqing Ren
Chao Yang
56
0
0
28 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
93
1
0
15 Dec 2024
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
324
7
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
61
2
0
04 Oct 2024
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
61
4
0
03 Oct 2024
Cauchy activation function and XNet
Xin Li
Zhihong Xia
Hongkun Zhang
98
4
0
28 Sep 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
73
0
0
21 Aug 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
78
2
0
04 Jul 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
60
7
0
08 May 2024
A score-based particle method for homogeneous Landau equation
Yan Huang
Li Wang
OT
72
5
0
08 May 2024
A time-stepping deep gradient flow method for option pricing in (rough) diffusion models
A. Papapantoleon
Jasper Rou
47
2
0
01 Mar 2024
A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models
E. Georgoulis
A. Papapantoleon
Costas Smaragdakis
54
7
0
12 Jan 2024
Generating synthetic data for neural operators
Erisa Hasani
Rachel A. Ward
AI4CE
87
8
0
04 Jan 2024
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
58
8
0
11 Feb 2023
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
120
153
0
17 Apr 2017
1