ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.05970
  4. Cited By
Generic Black-Box End-to-End Attack Against State of the Art API Call
  Based Malware Classifiers
v1v2v3v4v5 (latest)

Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

19 July 2017
Ishai Rosenberg
A. Shabtai
Lior Rokach
Yuval Elovici
    AAML
ArXiv (abs)PDFHTML

Papers citing "Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers"

23 / 23 papers shown
Title
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
105
73
0
07 Aug 2020
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural
  Networks
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networks
Ishai Rosenberg
Guillaume Sicard
E. David
53
43
0
27 Nov 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
163
2,160
0
21 Aug 2017
Black-Box Attacks against RNN based Malware Detection Algorithms
Black-Box Attacks against RNN based Malware Detection Algorithms
Weiwei Hu
Ying Tan
51
151
0
23 May 2017
Detecting Adversarial Samples from Artifacts
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
105
894
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
86
714
0
21 Feb 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
73
950
0
14 Feb 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
83
2,112
0
17 Jan 2017
Towards the Science of Security and Privacy in Machine Learning
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
96
474
0
11 Nov 2016
SoK: Applying Machine Learning in Security - A Survey
SoK: Applying Machine Learning in Security - A Survey
Heju Jiang
J. Nagra
P. Ahammad
36
30
0
10 Nov 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
Basel Alomair
AAML
143
1,741
0
08 Nov 2016
A multi-task learning model for malware classification with useful file
  access pattern from API call sequence
A multi-task learning model for malware classification with useful file access pattern from API call sequence
Xin Eric Wang
Siu-Ming Yiu
111
30
0
19 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILMMLAU
109
1,811
0
09 Sep 2016
Adversarial Perturbations Against Deep Neural Networks for Malware
  Classification
Adversarial Perturbations Against Deep Neural Networks for Malware Classification
Kathrin Grosse
Nicolas Papernot
Praveen Manoharan
Michael Backes
Patrick McDaniel
AAML
79
418
0
14 Jun 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILMAAML
116
1,742
0
24 May 2016
Crafting Adversarial Input Sequences for Recurrent Neural Networks
Crafting Adversarial Input Sequences for Recurrent Neural Networks
Nicolas Papernot
Patrick McDaniel
A. Swami
Richard E. Harang
AAMLGANSILM
61
456
0
28 Apr 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
117
3,968
0
24 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
118
3,077
0
14 Nov 2015
Deep Neural Network Based Malware Detection Using Two Dimensional Binary
  Program Features
Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features
Joshua Saxe
Konstantin Berlin
66
623
0
13 Aug 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,129
0
20 Dec 2014
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
607
12,745
0
11 Dec 2014
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
259
6,791
0
03 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
1