Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.03389
Cited By
SCAN: Learning Hierarchical Compositional Visual Concepts
11 July 2017
I. Higgins
Nicolas Sonnerat
Loic Matthey
Arka Pal
Christopher P. Burgess
Matko Bosnjak
Murray Shanahan
M. Botvinick
Demis Hassabis
Alexander Lerchner
OCL
DRL
CoGe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SCAN: Learning Hierarchical Compositional Visual Concepts"
10 / 10 papers shown
Title
RotLSTM: Rotating Memories in Recurrent Neural Networks
Vlad Velici
Adam Prugel-Bennett
RALM
VLM
17
1
0
01 May 2021
Locality and compositionality in zero-shot learning
Tristan Sylvain
Linda Petrini
R. Devon Hjelm
21
56
0
20 Dec 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
21
15
0
09 Sep 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
133
0
07 Jun 2019
Concept Learning with Energy-Based Models
William J. Wilkinson
27
25
0
06 Nov 2018
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Kexin Yi
Jiajun Wu
Chuang Gan
Antonio Torralba
Pushmeet Kohli
J. Tenenbaum
NAI
37
596
0
04 Oct 2018
Measuring abstract reasoning in neural networks
David Barrett
Felix Hill
Adam Santoro
Ari S. Morcos
Timothy Lillicrap
OOD
16
355
0
11 Jul 2018
Understanding disentangling in
β
β
β
-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
11
822
0
10 Apr 2018
Learning Disentangled Joint Continuous and Discrete Representations
Emilien Dupont
DRL
28
241
0
31 Mar 2018
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
22
249
0
30 Nov 2017
1