ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.03003
  4. Cited By
Tick: a Python library for statistical learning, with a particular
  emphasis on time-dependent modelling

Tick: a Python library for statistical learning, with a particular emphasis on time-dependent modelling

10 July 2017
Emmanuel Bacry
Martin Bompaire
Stéphane Gaïffas
Søren Poulsen
ArXivPDFHTML

Papers citing "Tick: a Python library for statistical learning, with a particular emphasis on time-dependent modelling"

5 / 5 papers shown
Title
HoTPP Benchmark: Are We Good at the Long Horizon Events Forecasting?
HoTPP Benchmark: Are We Good at the Long Horizon Events Forecasting?
Ivan Karpukhin
F. Shipilov
Andrey Savchenko
AI4TS
81
4
0
20 Jun 2024
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
M. Achab
Emmanuel Bacry
Stéphane Gaïffas
I. Mastromatteo
Jean-François Muzy
74
91
0
21 Jul 2016
Learning Granger Causality for Hawkes Processes
Learning Granger Causality for Hawkes Processes
Hongteng Xu
Mehrdad Farajtabar
H. Zha
AI4TS
CML
43
226
0
14 Feb 2016
Second order statistics characterization of Hawkes processes and
  non-parametric estimation
Second order statistics characterization of Hawkes processes and non-parametric estimation
Emmanuel Bacry
Jean-François Muzy
65
31
0
05 Jan 2014
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
117
1,031
0
10 Sep 2012
1