ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04511
14
224

Learning Granger Causality for Hawkes Processes

14 February 2016
Hongteng Xu
Mehrdad Farajtabar
H. Zha
    AI4TS
    CML
ArXivPDFHTML
Abstract

Learning Granger causality for general point processes is a very challenging task. In this paper, we propose an effective method, learning Granger causality, for a special but significant type of point processes --- Hawkes process. We reveal the relationship between Hawkes process's impact function and its Granger causality graph. Specifically, our model represents impact functions using a series of basis functions and recovers the Granger causality graph via group sparsity of the impact functions' coefficients. We propose an effective learning algorithm combining a maximum likelihood estimator (MLE) with a sparse-group-lasso (SGL) regularizer. Additionally, the flexibility of our model allows to incorporate the clustering structure event types into learning framework. We analyze our learning algorithm and propose an adaptive procedure to select basis functions. Experiments on both synthetic and real-world data show that our method can learn the Granger causality graph and the triggering patterns of the Hawkes processes simultaneously.

View on arXiv
Comments on this paper