ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.02267
  4. Cited By
Transferring End-to-End Visuomotor Control from Simulation to Real World
  for a Multi-Stage Task
v1v2 (latest)

Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task

7 July 2017
Stephen James
Andrew J. Davison
Edward Johns
ArXiv (abs)PDFHTML

Papers citing "Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task"

29 / 29 papers shown
Title
Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies
Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies
Pingcheng Jian
Easop Lee
Zachary I. Bell
Michael M. Zavlanos
Boyuan Chen
172
1
0
03 Jan 2025
RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
Kanishka Rao
Chris Harris
A. Irpan
Sergey Levine
Julian Ibarz
Mohi Khansari
118
190
0
16 Jun 2020
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
120
417
0
26 Jul 2017
Multi-Modal Imitation Learning from Unstructured Demonstrations using
  Generative Adversarial Nets
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
Karol Hausman
Yevgen Chebotar
S. Schaal
Gaurav Sukhatme
Joseph J. Lim
GAN
76
150
0
30 May 2017
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement
  Learning
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning
Nat Dilokthanakul
Christos Kaplanis
Nick Pawlowski
Murray Shanahan
72
92
0
18 May 2017
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
I. Popov
N. Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
OffRL
90
265
0
10 Apr 2017
One-Shot Imitation Learning
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
86
689
0
21 Mar 2017
Domain Randomization for Transferring Deep Neural Networks from
  Simulation to the Real World
Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
Joshua Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
267
2,973
0
20 Mar 2017
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement
  Learning
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning
Abhishek Gupta
Coline Devin
YuXuan Liu
Pieter Abbeel
Sergey Levine
91
269
0
08 Mar 2017
Third-Person Imitation Learning
Third-Person Imitation Learning
Bradly C. Stadie
Pieter Abbeel
Ilya Sutskever
88
235
0
06 Mar 2017
Reinforcement Learning with Unsupervised Auxiliary Tasks
Reinforcement Learning with Unsupervised Auxiliary Tasks
Max Jaderberg
Volodymyr Mnih
Wojciech M. Czarnecki
Tom Schaul
Joel Z Leibo
David Silver
Koray Kavukcuoglu
SSL
111
1,229
0
16 Nov 2016
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
311
818
0
13 Nov 2016
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Andrei A. Rusu
Matej Vecerík
Thomas Rothörl
N. Heess
Razvan Pascanu
R. Hadsell
95
534
0
13 Oct 2016
Transfer from Simulation to Real World through Learning Deep Inverse
  Dynamics Model
Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model
Paul Christiano
Zain Shah
Igor Mordatch
Jonas Schneider
T. Blackwell
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
PINN
97
250
0
11 Oct 2016
Reset-Free Guided Policy Search: Efficient Deep Reinforcement Learning
  with Stochastic Initial States
Reset-Free Guided Policy Search: Efficient Deep Reinforcement Learning with Stochastic Initial States
William H. Montgomery
Anurag Ajay
Chelsea Finn
Pieter Abbeel
Sergey Levine
OnRL
79
37
0
04 Oct 2016
Deep Visual Foresight for Planning Robot Motion
Deep Visual Foresight for Planning Robot Motion
Chelsea Finn
Sergey Levine
123
788
0
03 Oct 2016
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous
  Off-Policy Updates
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates
S. Gu
E. Holly
Timothy Lillicrap
Sergey Levine
OffRLSSL
116
1,483
0
03 Oct 2016
Learning Modular Neural Network Policies for Multi-Task and Multi-Robot
  Transfer
Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer
Coline Devin
Abhishek Gupta
Trevor Darrell
Pieter Abbeel
Sergey Levine
OffRL
84
400
0
22 Sep 2016
3D Simulation for Robot Arm Control with Deep Q-Learning
3D Simulation for Robot Arm Control with Deep Q-Learning
Stephen James
Edward Johns
83
108
0
13 Sep 2016
Deep Learning a Grasp Function for Grasping under Gripper Pose
  Uncertainty
Deep Learning a Grasp Function for Grasping under Gripper Pose Uncertainty
Edward Johns
Stefan Leutenegger
Andrew J. Davison
OOD
70
259
0
07 Aug 2016
Guided Policy Search as Approximate Mirror Descent
Guided Policy Search as Approximate Mirror Descent
William H. Montgomery
Sergey Levine
75
126
0
15 Jul 2016
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning
  and Large-Scale Data Collection
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection
Sergey Levine
P. Pastor
A. Krizhevsky
Deirdre Quillen
192
2,075
0
07 Mar 2016
PLATO: Policy Learning using Adaptive Trajectory Optimization
PLATO: Policy Learning using Adaptive Trajectory Optimization
G. Kahn
Tianhao Zhang
Sergey Levine
Pieter Abbeel
82
137
0
02 Mar 2016
Adapting Deep Visuomotor Representations with Weak Pairwise Constraints
Adapting Deep Visuomotor Representations with Weak Pairwise Constraints
Eric Tzeng
Coline Devin
Judy Hoffman
Chelsea Finn
Pieter Abbeel
Sergey Levine
Kate Saenko
Trevor Darrell
OOD
91
140
0
23 Nov 2015
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion
  Control
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control
Fangyi Zhang
Jurgen Leitner
Michael Milford
B. Upcroft
Peter Corke
81
274
0
12 Nov 2015
Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700
  Robot Hours
Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours
Lerrel Pinto
Abhinav Gupta
SSL
108
1,152
0
23 Sep 2015
Learning Deep Control Policies for Autonomous Aerial Vehicles with
  MPC-Guided Policy Search
Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search
Tianhao Zhang
G. Kahn
Sergey Levine
Pieter Abbeel
76
428
0
22 Sep 2015
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
315
3,444
0
02 Apr 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
1