ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.01283
  4. Cited By
SADA: A General Framework to Support Robust Causation Discovery with
  Theoretical Guarantee

SADA: A General Framework to Support Robust Causation Discovery with Theoretical Guarantee

5 July 2017
Ruichu Cai
Zhenjie Zhang
Zijian Li
    CML
ArXiv (abs)PDFHTML

Papers citing "SADA: A General Framework to Support Robust Causation Discovery with Theoretical Guarantee"

4 / 4 papers shown
Title
Improving Efficiency and Accuracy of Causal Discovery Using a
  Hierarchical Wrapper
Improving Efficiency and Accuracy of Causal Discovery Using a Hierarchical Wrapper
Shami Nisimov
Yaniv Gurwicz
R. Y. Rohekar
Gal Novik
CMLTPM
18
6
0
11 Jul 2021
Causal query in observational data with hidden variables
Causal query in observational data with hidden variables
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
Kui Yu
T. Le
CML
82
11
0
28 Jan 2020
Causal Discovery for Manufacturing Domains
Causal Discovery for Manufacturing Domains
Katerina Marazopoulou
Rumi Ghosh
Prasanth Lade
David D. Jensen
CML
118
20
0
13 May 2016
DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast
  Streams
DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams
T. Fu
Jianbing Ding
Richard T. B. Ma
Marianne Winslett
Yifan Yang
Zhenjie Zhang
60
104
0
15 Jan 2015
1