Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.10295
Cited By
Noisy Networks for Exploration
30 June 2017
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
Alex Graves
Vlad Mnih
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noisy Networks for Exploration"
50 / 165 papers shown
Title
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
34
115
0
02 Oct 2020
Distributed Structured Actor-Critic Reinforcement Learning for Universal Dialogue Management
Zhi Chen
Lu Chen
Xiaoyuan Liu
Kai Yu
41
20
0
22 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
44
79
0
17 Sep 2020
Variance Reduction for Deep Q-Learning using Stochastic Recursive Gradient
Hao Jia
Xiao Zhang
Jun Xu
Wei Zeng
Hao Jiang
Xiao Yan
Ji-Rong Wen
25
3
0
25 Jul 2020
Revisiting Fundamentals of Experience Replay
W. Fedus
Prajit Ramachandran
Rishabh Agarwal
Yoshua Bengio
Hugo Larochelle
Mark Rowland
Will Dabney
KELM
OffRL
30
235
0
13 Jul 2020
Data-Efficient Reinforcement Learning with Self-Predictive Representations
Max Schwarzer
Ankesh Anand
Rishab Goel
R. Devon Hjelm
Aaron Courville
Philip Bachman
41
312
0
12 Jul 2020
Non-local Policy Optimization via Diversity-regularized Collaborative Exploration
Zhenghao Peng
Hao Sun
Bolei Zhou
18
18
0
14 Jun 2020
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
34
0
02 Jun 2020
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
352
0
27 Apr 2020
CURL: Contrastive Unsupervised Representations for Reinforcement Learning
A. Srinivas
Michael Laskin
Pieter Abbeel
SSL
DRL
OffRL
49
1,063
0
08 Apr 2020
An Application of Deep Reinforcement Learning to Algorithmic Trading
Thibaut Théate
D. Ernst
AIFin
19
162
0
07 Apr 2020
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
29
510
0
30 Mar 2020
Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding
Seonguk Park
Gyubok Lee
Manoj Bhat
Jimin Seo
Minseok Kang
Jonathan M Francis
Ashwin R. Jadhav
Paul Pu Liang
Louis-Philippe Morency
136
119
0
06 Mar 2020
Off-Policy Deep Reinforcement Learning with Analogous Disentangled Exploration
Hoang Trung-Dung
Yitao Liang
Guy Van den Broeck
OffRL
22
3
0
25 Feb 2020
How Transferable are the Representations Learned by Deep Q Agents?
Jacob Tyo
Zachary Chase Lipton
OffRL
17
6
0
24 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
A Survey of Deep Reinforcement Learning in Video Games
Kun Shao
Zhentao Tang
Yuanheng Zhu
Nannan Li
Dongbin Zhao
OffRL
AI4TS
43
188
0
23 Dec 2019
End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
44
205
0
25 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
27
12
0
19 Nov 2019
Multi-Path Policy Optimization
L. Pan
Qingpeng Cai
Longbo Huang
18
2
0
11 Nov 2019
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
16
19
0
30 Oct 2019
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
29
100
0
23 Sep 2019
Interactive Language Learning by Question Answering
Xingdi Yuan
Marc-Alexandre Côté
Jie Fu
Zhouhan Lin
C. Pal
Yoshua Bengio
Adam Trischler
15
46
0
28 Aug 2019
Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
27
25
0
13 Aug 2019
Accelerating Reinforcement Learning through GPU Atari Emulation
Steven Dalton
I. Frosio
M. Garland
ELM
27
9
0
19 Jul 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
21
57
0
01 Jul 2019
Modern Deep Reinforcement Learning Algorithms
Sergey Ivanov
A. Dýakonov
OffRL
29
39
0
24 Jun 2019
Efficient Exploration via State Marginal Matching
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric Xing
Sergey Levine
Ruslan Salakhutdinov
35
242
0
12 Jun 2019
When to use parametric models in reinforcement learning?
H. V. Hasselt
Matteo Hessel
John Aslanides
37
189
0
12 Jun 2019
Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
A. Choromańska
K. Choromanski
Michael I. Jordan
27
38
0
11 Jun 2019
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
35
375
0
10 Jun 2019
AgentGraph: Towards Universal Dialogue Management with Structured Deep Reinforcement Learning
Lu Chen
Zhi Chen
Bowen Tan
Sishan Long
Milica Gasic
Kai Yu
19
35
0
27 May 2019
AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
Jeff Clune
17
116
0
27 May 2019
Risk Averse Robust Adversarial Reinforcement Learning
Xinlei Pan
Daniel Seita
Yang Gao
John F. Canny
AAML
16
96
0
31 Mar 2019
Autoregressive Policies for Continuous Control Deep Reinforcement Learning
D. Korenkevych
A. R. Mahmood
Gautham Vasan
James Bergstra
29
28
0
27 Mar 2019
Artificial Intelligence for Prosthetics - challenge solutions
L. Kidzinski
Carmichael F. Ong
Sharada Mohanty
Jennifer Hicks
Sean F. Carroll
...
E. Tumer
J. Watson
M. Salathé
Sergey Levine
Scott L. Delp
15
40
0
07 Feb 2019
Never Forget: Balancing Exploration and Exploitation via Learning Optical Flow
Hsuan-Kung Yang
Po-Han Chiang
Kuan-Wei Ho
Min-Fong Hong
Chun-Yi Lee
35
7
0
24 Jan 2019
Exploration Conscious Reinforcement Learning Revisited
Lior Shani
Yonathan Efroni
Shie Mannor
21
2
0
13 Dec 2018
Active Deep Q-learning with Demonstration
Si-An Chen
Voot Tangkaratt
Hsuan-Tien Lin
Masashi Sugiyama
18
32
0
06 Dec 2018
Applications of Deep Reinforcement Learning in Communications and Networking: A Survey
Nguyen Cong Luong
D. Hoang
Shimin Gong
Dusit Niyato
Ping Wang
Ying-Chang Liang
Dong In Kim
OffRL
57
1,424
0
18 Oct 2018
Switching Isotropic and Directional Exploration with Parameter Space Noise in Deep Reinforcement Learning
Izumi Karino
Kazutoshi Tanaka
Ryuma Niiyama
Yasuo Kuniyoshi
19
3
0
18 Sep 2018
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
16
66
0
09 Aug 2018
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
33
213
0
20 Jun 2018
Implicit Quantile Networks for Distributional Reinforcement Learning
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
OffRL
25
529
0
14 Jun 2018
Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network
Wenjia Meng
Qian Zheng
L. Yang
Pengfei Li
Gang Pan
20
21
0
14 Jun 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
21
372
0
08 Jun 2018
Adversarial Reinforcement Learning Framework for Benchmarking Collision Avoidance Mechanisms in Autonomous Vehicles
Vahid Behzadan
Arslan Munir
AAML
33
51
0
04 Jun 2018
Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning
Ramtin Keramati
Jay Whang
Patrick Cho
Emma Brunskill
OffRL
29
7
0
01 Jun 2018
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
53
324
0
24 May 2018
Previous
1
2
3
4
Next