ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08606
  4. Cited By
Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study
v1v2 (latest)

Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study

26 June 2017
Samuel Ritter
David Barrett
Adam Santoro
M. Botvinick
ArXiv (abs)PDFHTML

Papers citing "Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study"

14 / 14 papers shown
Title
CogLM: Tracking Cognitive Development of Large Language Models
CogLM: Tracking Cognitive Development of Large Language Models
Xinglin Wang
Peiwen Yuan
Shaoxiong Feng
Yiwei Li
Boyuan Pan
Heda Wang
Yao Hu
Kan Li
ELM
99
0
0
17 Aug 2024
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
192
690
0
06 Dec 2017
Discovering objects and their relations from entangled scene
  representations
Discovering objects and their relations from entangled scene representations
David Raposo
Adam Santoro
David Barrett
Razvan Pascanu
Timothy Lillicrap
Peter W. Battaglia
GNNOCL
76
71
0
16 Feb 2017
Early Visual Concept Learning with Unsupervised Deep Learning
Early Visual Concept Learning with Unsupervised Deep Learning
I. Higgins
Loic Matthey
Xavier Glorot
Arka Pal
Benigno Uria
Charles Blundell
S. Mohamed
Alexander Lerchner
CoGeOCLDRL
61
173
0
17 Jun 2016
Model-Free Episodic Control
Model-Free Episodic Control
Charles Blundell
Benigno Uria
Alexander Pritzel
Yazhe Li
Avraham Ruderman
Joel Z Leibo
Jack W. Rae
Daan Wierstra
Demis Hassabis
OffRLBDL
55
250
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
373
7,323
0
13 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,706
0
10 Jun 2016
Towards Conceptual Compression
Towards Conceptual Compression
Karol Gregor
F. Besse
Danilo Jimenez Rezende
Ivo Danihelka
Daan Wierstra
DRLOCLSSLBDL
74
248
0
29 Apr 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
883
27,373
0
02 Dec 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAttAI4CE
124
1,874
0
22 Jun 2015
Visualizing and Understanding Recurrent Networks
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
123
1,101
0
05 Jun 2015
Visualizing and Understanding Neural Models in NLP
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILMFAtt
81
706
0
02 Jun 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
477
43,685
0
17 Sep 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,893
0
12 Nov 2013
1