ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.01129
16
11

Lipschitz Networks and Distributional Robustness

4 September 2018
Zac Cranko
Simon Kornblith
Zhan Shi
Richard Nock
    OOD
ArXivPDFHTML
Abstract

Robust risk minimisation has several advantages: it has been studied with regards to improving the generalisation properties of models and robustness to adversarial perturbation. We bound the distributionally robust risk for a model class rich enough to include deep neural networks by a regularised empirical risk involving the Lipschitz constant of the model. This allows us to interpretand quantify the robustness properties of a deep neural network. As an application we show the distributionally robust risk upperbounds the adversarial training risk.

View on arXiv
Comments on this paper