ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07206
  4. Cited By
Explaining Recurrent Neural Network Predictions in Sentiment Analysis

Explaining Recurrent Neural Network Predictions in Sentiment Analysis

22 June 2017
L. Arras
G. Montavon
K. Müller
Wojciech Samek
    FAtt
ArXivPDFHTML

Papers citing "Explaining Recurrent Neural Network Predictions in Sentiment Analysis"

14 / 14 papers shown
Title
SPES: Spectrogram Perturbation for Explainable Speech-to-Text Generation
SPES: Spectrogram Perturbation for Explainable Speech-to-Text Generation
Dennis Fucci
Marco Gaido
Beatrice Savoldi
Matteo Negri
Mauro Cettolo
L. Bentivogli
159
2
0
03 Nov 2024
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
88
82
0
17 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
268
2,254
0
24 Jun 2017
Automatic Rule Extraction from Long Short Term Memory Networks
Automatic Rule Extraction from Long Short Term Memory Networks
W. James Murdoch
Arthur Szlam
37
87
0
08 Feb 2017
Understanding Neural Networks through Representation Erasure
Understanding Neural Networks through Representation Erasure
Jiwei Li
Will Monroe
Dan Jurafsky
AAML
MILM
74
562
0
24 Dec 2016
"What is Relevant in a Text Document?": An Interpretable Machine
  Learning Approach
"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
46
288
0
23 Dec 2016
Explaining Predictions of Non-Linear Classifiers in NLP
Explaining Predictions of Non-Linear Classifiers in NLP
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
FAtt
69
117
0
23 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
104
1,189
0
21 Sep 2015
Visualizing and Understanding Neural Models in NLP
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILM
FAtt
64
706
0
02 Jun 2015
Extraction of Salient Sentences from Labelled Documents
Extraction of Salient Sentences from Labelled Documents
Misha Denil
Alban Demiraj
Nando de Freitas
41
137
0
21 Dec 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
647
23,235
0
03 Jun 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
194
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
327
15,825
0
12 Nov 2013
1