Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.06083
Cited By
Towards Deep Learning Models Resistant to Adversarial Attacks
19 June 2017
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Deep Learning Models Resistant to Adversarial Attacks"
50 / 6,519 papers shown
Title
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
33
204
0
06 Jun 2019
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust and Robust Components in Performance Metric
Yujun Shi
B. Liao
Guangyong Chen
Yun-Hai Liu
Ming-Ming Cheng
Jiashi Feng
AAML
6
2
0
06 Jun 2019
Image Synthesis with a Single (Robust) Classifier
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Madry
AAML
14
34
0
06 Jun 2019
Should Adversarial Attacks Use Pixel p-Norm?
Ayon Sen
Xiaojin Zhu
Liam Marshall
Robert D. Nowak
14
21
0
06 Jun 2019
Query-efficient Meta Attack to Deep Neural Networks
Jiawei Du
Hu Zhang
Qiufeng Wang
Yi Yang
Jiashi Feng
AAML
27
84
0
06 Jun 2019
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu
Tesi Xiao
Si Si
Qin Cao
Sanjiv Kumar
Cho-Jui Hsieh
24
133
0
05 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
27
203
0
05 Jun 2019
A Tunable Loss Function for Robust Classification: Calibration, Landscape, and Generalization
Tyler Sypherd
Mario Díaz
J. Cava
Gautam Dasarathy
Peter Kairouz
Lalitha Sankar
23
28
0
05 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
31
15
0
05 Jun 2019
Do Image Classifiers Generalize Across Time?
Vaishaal Shankar
Achal Dave
Rebecca Roelofs
Deva Ramanan
Benjamin Recht
Ludwig Schmidt
20
82
0
05 Jun 2019
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
18
2
0
05 Jun 2019
Adversarial Training is a Form of Data-dependent Operator Norm Regularization
Kevin Roth
Yannic Kilcher
Thomas Hofmann
17
13
0
04 Jun 2019
What do AI algorithms actually learn? - On false structures in deep learning
L. Thesing
Vegard Antun
A. Hansen
8
21
0
04 Jun 2019
Architecture Selection via the Trade-off Between Accuracy and Robustness
Zhun Deng
Cynthia Dwork
Jialiang Wang
Yao-Min Zhao
AAML
19
3
0
04 Jun 2019
Understanding the Limitations of Conditional Generative Models
Ethan Fetaya
J. Jacobsen
Will Grathwohl
R. Zemel
21
53
0
04 Jun 2019
Correctness Verification of Neural Networks
Yichen Yang
Martin Rinard
AAML
19
12
0
03 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Aleksander Madry
OOD
AAML
29
63
0
03 Jun 2019
DAWN: Dynamic Adversarial Watermarking of Neural Networks
S. Szyller
B. Atli
Samuel Marchal
Nadarajah Asokan
MLAU
AAML
18
176
0
03 Jun 2019
Adversarial Risk Bounds for Neural Networks through Sparsity based Compression
E. Balda
Arash Behboodi
Niklas Koep
R. Mathar
AAML
27
7
0
03 Jun 2019
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models
P. Morawiecki
Przemysław Spurek
Marek Śmieja
Jacek Tabor
AAML
OOD
27
8
0
03 Jun 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
J. Hopcroft
Liwei Wang
20
154
0
03 Jun 2019
Heterogeneous Gaussian Mechanism: Preserving Differential Privacy in Deep Learning with Provable Robustness
Nhathai Phan
Minh Nhat Vu
Yang Liu
R. Jin
Dejing Dou
Xintao Wu
My T. Thai
AAML
22
51
0
02 Jun 2019
Adversarial Examples for Edge Detection: They Exist, and They Transfer
Christian Cosgrove
Alan Yuille
AAML
GAN
28
12
0
02 Jun 2019
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin
Chi Jin
Michael I. Jordan
30
500
0
02 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
37
3
0
01 Jun 2019
Perceptual Evaluation of Adversarial Attacks for CNN-based Image Classification
Sid Ahmed Fezza
Yassine Bakhti
W. Hamidouche
Olivier Déforges
AAML
22
31
0
01 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
63
746
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
36
331
0
31 May 2019
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
A. Malinin
Mark Gales
UQCV
AAML
27
172
0
31 May 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
40
21
0
30 May 2019
Meta Dropout: Learning to Perturb Features for Generalization
Haebeom Lee
Taewook Nam
Eunho Yang
Sung Ju Hwang
OOD
22
3
0
30 May 2019
Interpretable Adversarial Training for Text
Samuel Barham
S. Feizi
AAML
21
17
0
30 May 2019
Bandlimiting Neural Networks Against Adversarial Attacks
Yuping Lin
A. KasraAhmadiK.
Hui Jiang
AAML
14
6
0
30 May 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
27
187
0
29 May 2019
Functional Adversarial Attacks
Cassidy Laidlaw
S. Feizi
AAML
19
183
0
29 May 2019
Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness
Saeed Mahloujifar
Xiao Zhang
Mohammad Mahmoody
David Evans
19
22
0
29 May 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
31
63
0
28 May 2019
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
Haohan Wang
Xindi Wu
Pengcheng Yin
Eric Xing
22
513
0
28 May 2019
Fault Sneaking Attack: a Stealthy Framework for Misleading Deep Neural Networks
Pu Zhao
Siyue Wang
Cheng Gongye
Yanzhi Wang
Yunsi Fei
Xinyu Lin
AAML
19
75
0
28 May 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
15
168
0
28 May 2019
Controlling Neural Level Sets
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
22
118
0
28 May 2019
Expected Tight Bounds for Robust Training
Salman Alsubaihi
Adel Bibi
Modar Alfadly
Abdullah Hamdi
Guohao Li
OOD
AAML
17
0
0
28 May 2019
Brain-inspired reverse adversarial examples
Shaokai Ye
S. Tan
Kaidi Xu
Yanzhi Wang
Chenglong Bao
Kaisheng Ma
AAML
8
5
0
28 May 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
23
24
0
28 May 2019
Label Universal Targeted Attack
Naveed Akhtar
M. Jalwana
Bennamoun
Ajmal Mian
AAML
25
5
0
27 May 2019
Analyzing the Interpretability Robustness of Self-Explaining Models
Haizhong Zheng
Earlence Fernandes
A. Prakash
AAML
LRM
24
7
0
27 May 2019
GAT: Generative Adversarial Training for Adversarial Example Detection and Robust Classification
Xuwang Yin
Soheil Kolouri
Gustavo K. Rohde
AAML
33
43
0
27 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
Francesco Croce
Matthias Hein
OOD
25
75
0
27 May 2019
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
31
129
0
27 May 2019
Previous
1
2
3
...
120
121
122
...
129
130
131
Next