Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.06083
Cited By
Towards Deep Learning Models Resistant to Adversarial Attacks
19 June 2017
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Deep Learning Models Resistant to Adversarial Attacks"
50 / 6,519 papers shown
Title
Enforcing Linearity in DNN succours Robustness and Adversarial Image Generation
A. Sarkar
Nikhil Kumar Gupta
Raghu Sesha Iyengar
AAML
16
11
0
17 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
134
103
0
17 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
MUTE: Data-Similarity Driven Multi-hot Target Encoding for Neural Network Design
Mayoore S. Jaiswal
Bumboo Kang
Jinho Lee
Minsik Cho
21
2
0
15 Oct 2019
Extracting robust and accurate features via a robust information bottleneck
Ankit Pensia
Varun Jog
Po-Ling Loh
AAML
26
20
0
15 Oct 2019
ODE guided Neural Data Augmentation Techniques for Time Series Data and its Benefits on Robustness
A. Sarkar
A. Raj
Raghu Sesha Iyengar
AAML
AI4TS
34
0
0
15 Oct 2019
Understanding Misclassifications by Attributes
Sadaf Gulshad
Zeynep Akata
J. H. Metzen
A. Smeulders
AAML
38
0
0
15 Oct 2019
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
Xiangyi Chen
Sijia Liu
Kaidi Xu
Xingguo Li
Xue Lin
Mingyi Hong
David Cox
ODL
19
105
0
15 Oct 2019
DeepSearch: A Simple and Effective Blackbox Attack for Deep Neural Networks
Fuyuan Zhang
Sankalan Pal Chowdhury
M. Christakis
AAML
28
8
0
14 Oct 2019
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
David Stutz
Matthias Hein
Bernt Schiele
AAML
25
5
0
14 Oct 2019
Man-in-the-Middle Attacks against Machine Learning Classifiers via Malicious Generative Models
Derui Wang
Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
13
32
0
14 Oct 2019
On Robustness of Neural Ordinary Differential Equations
Hanshu Yan
Jiawei Du
Vincent Y. F. Tan
Jiashi Feng
OOD
27
138
0
12 Oct 2019
Hear "No Evil", See "Kenansville": Efficient and Transferable Black-Box Attacks on Speech Recognition and Voice Identification Systems
H. Abdullah
Muhammad Sajidur Rahman
Washington Garcia
Logan Blue
Kevin Warren
Anurag Swarnim Yadav
T. Shrimpton
Patrick Traynor
AAML
33
87
0
11 Oct 2019
Noise as a Resource for Learning in Knowledge Distillation
Elahe Arani
F. Sarfraz
Bahram Zonooz
18
6
0
11 Oct 2019
Verification of Neural Networks: Specifying Global Robustness using Generative Models
Nathanaël Fijalkow
M. Gupta
AAML
22
2
0
11 Oct 2019
Information Aware Max-Norm Dirichlet Networks for Predictive Uncertainty Estimation
Theodoros Tsiligkaridis
UQCV
BDL
16
8
0
10 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
38
85
0
09 Oct 2019
Deep Latent Defence
Giulio Zizzo
C. Hankin
S. Maffeis
K. Jones
AAML
38
2
0
09 Oct 2019
Adversarial Learning of Deepfakes in Accounting
Marco Schreyer
Timur Sattarov
Bernd Reimer
Damian Borth
AAML
30
26
0
09 Oct 2019
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
J. Dawson
Nasser M. Nasrabadi
AAML
104
19
0
08 Oct 2019
Directional Adversarial Training for Cost Sensitive Deep Learning Classification Applications
M. Terzi
Gian Antonio Susto
Pratik Chaudhari
OOD
AAML
16
15
0
08 Oct 2019
AdvSPADE: Realistic Unrestricted Attacks for Semantic Segmentation
Guangyu Shen
Chengzhi Mao
Junfeng Yang
Baishakhi Ray
GAN
28
12
0
06 Oct 2019
Yet another but more efficient black-box adversarial attack: tiling and evolution strategies
Laurent Meunier
Cen Chen
Li Wang
MLAU
AAML
33
40
0
05 Oct 2019
Adversarial Examples for Cost-Sensitive Classifiers
Mahdi Akbari Zarkesh
A. Lohn
Ali Movaghar
SILM
AAML
24
3
0
04 Oct 2019
On the Detection of Digital Face Manipulation
H. Dang
Anand Balakrishnan
J. Stehouwer
Connor Christopherson
David Wingate
CVBM
AAML
30
534
0
03 Oct 2019
Information based Deep Clustering: An experimental study
Jizong Peng
Christian Desrosiers
M. Pedersoli
27
1
0
03 Oct 2019
Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications
Andreas Venzke
Spyros Chatzivasileiadis
14
67
0
03 Oct 2019
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions
He Zhao
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
28
8
0
03 Oct 2019
Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
Micah Goldblum
Liam H. Fowl
Tom Goldstein
22
13
0
02 Oct 2019
Analyzing and Improving Neural Networks by Generating Semantic Counterexamples through Differentiable Rendering
Lakshya Jain
Varun Chandrasekaran
Uyeong Jang
Wilson Wu
Andrew Lee
Andy Yan
Steven Chen
S. Jha
S. Seshia
AAML
21
11
0
02 Oct 2019
An Efficient and Margin-Approaching Zero-Confidence Adversarial Attack
Yang Zhang
Shiyu Chang
Mo Yu
Kaizhi Qian
AAML
23
2
0
01 Oct 2019
Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory
Micah Goldblum
Jonas Geiping
Avi Schwarzschild
Michael Moeller
Tom Goldstein
21
32
0
01 Oct 2019
Predicting with High Correlation Features
Devansh Arpit
Caiming Xiong
R. Socher
OODD
OOD
22
7
0
01 Oct 2019
Role of Spatial Context in Adversarial Robustness for Object Detection
Aniruddha Saha
Akshayvarun Subramanya
Koninika Patil
Hamed Pirsiavash
ObjD
AAML
32
53
0
30 Sep 2019
Synthesizing Action Sequences for Modifying Model Decisions
Goutham Ramakrishnan
Yun Chan Lee
Aws Albarghouthi
20
32
0
30 Sep 2019
Hidden Trigger Backdoor Attacks
Aniruddha Saha
Akshayvarun Subramanya
Hamed Pirsiavash
36
613
0
30 Sep 2019
Black-box Adversarial Attacks with Bayesian Optimization
Satya Narayan Shukla
Anit Kumar Sahu
Devin Willmott
J. Zico Kolter
AAML
MLAU
14
30
0
30 Sep 2019
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML
Sijia Liu
Songtao Lu
Xiangyi Chen
Yao Feng
Kaidi Xu
Abdullah Al-Dujaili
Mingyi Hong
Una-May Obelilly
38
26
0
30 Sep 2019
Deep k-NN Defense against Clean-label Data Poisoning Attacks
Neehar Peri
Neal Gupta
Wenjie Huang
Liam H. Fowl
Chen Zhu
S. Feizi
Tom Goldstein
John P. Dickerson
AAML
19
6
0
29 Sep 2019
Library network, a possible path to explainable neural networks
J. H. Lee
AAML
AI4CE
11
0
0
29 Sep 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
29
18
0
27 Sep 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
32
92
0
26 Sep 2019
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
33
139
0
26 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
437
0
26 Sep 2019
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
Chen Zhu
Yu Cheng
Zhe Gan
S. Sun
Tom Goldstein
Jingjing Liu
AAML
234
438
0
25 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
134
219
0
24 Sep 2019
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
Jinyuan Jia
Ahmed Salem
Michael Backes
Yang Zhang
Neil Zhenqiang Gong
33
384
0
23 Sep 2019
FENCE: Feasible Evasion Attacks on Neural Networks in Constrained Environments
Alesia Chernikova
Alina Oprea
AAML
19
35
0
23 Sep 2019
Previous
1
2
3
...
116
117
118
...
129
130
131
Next