Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.05206
Cited By
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
16 June 2017
Nitika Verma
Edmond Boyer
Jakob Verbeek
3DPC
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis"
7 / 7 papers shown
Title
Learning Feature Aggregation for Deep 3D Morphable Models
Zhixiang Chen
Tae-Kyun Kim
3DPC
3DH
45
24
0
05 May 2021
Learning Diverse Fashion Collocation by Neural Graph Filtering
Xin Liu
Yongbin Sun
Ziwei Liu
Dahua Lin
29
26
0
11 Mar 2020
Point2Node: Correlation Learning of Dynamic-Node for Point Cloud Feature Modeling
Wenkai Han
Chenglu Wen
Cheng-Yu Wang
Xin Li
Qing Li
3DPC
16
93
0
23 Dec 2019
PAN: Path Integral Based Convolution for Deep Graph Neural Networks
Zheng Ma
Ming Li
Yuguang Wang
GNN
22
24
0
24 Apr 2019
DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model
Bo Wu
Yang Liu
B. Lang
Lei Huang
27
68
0
10 Dec 2017
Deformable Shape Completion with Graph Convolutional Autoencoders
Or Litany
A. Bronstein
M. Bronstein
A. Makadia
25
222
0
01 Dec 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
260
1,811
0
25 Nov 2016
1