ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04638
  4. Cited By
Proximal Backpropagation
v1v2v3 (latest)

Proximal Backpropagation

14 June 2017
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
ArXiv (abs)PDFHTML

Papers citing "Proximal Backpropagation"

11 / 11 papers shown
Title
Deep Relaxation: partial differential equations for optimizing deep
  neural networks
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
150
154
0
17 Apr 2017
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
96
775
0
06 Nov 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
254
3,226
0
15 Jun 2016
Theano: A Python framework for fast computation of mathematical
  expressions
Theano: A Python framework for fast computation of mathematical expressions
The Theano Development Team
Rami Al-Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermüller
...
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
208
2,340
0
09 May 2016
Training Neural Networks Without Gradients: A Scalable ADMM Approach
Training Neural Networks Without Gradients: A Scalable ADMM Approach
Gavin Taylor
R. Burmeister
Zheng Xu
Bharat Singh
Ankit B. Patel
Tom Goldstein
ODL
79
276
0
06 May 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
350
18,654
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
448
20,606
0
10 Sep 2014
Identifying and attacking the saddle point problem in high-dimensional
  non-convex optimization
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
132
1,394
0
10 Jun 2014
Fast large-scale optimization by unifying stochastic gradient and
  quasi-Newton methods
Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods
Jascha Narain Sohl-Dickstein
Ben Poole
Surya Ganguli
ODL
138
124
0
09 Nov 2013
Distributed optimization of deeply nested systems
Distributed optimization of deeply nested systems
M. A. Carreira-Perpiñán
Weiran Wang
109
196
0
24 Dec 2012
1