ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04599
  4. Cited By
On Calibration of Modern Neural Networks

On Calibration of Modern Neural Networks

14 June 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
    UQCV
ArXivPDFHTML

Papers citing "On Calibration of Modern Neural Networks"

50 / 154 papers shown
Title
Optimizing Calibration by Gaining Aware of Prediction Correctness
Optimizing Calibration by Gaining Aware of Prediction Correctness
Yuchi Liu
Lei Wang
Yuli Zou
James Zou
Liang Zheng
UQCV
77
2
0
19 Apr 2024
Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
Jingyang Zhang
Jingwei Sun
Eric C. Yeats
Ouyang Yang
Martin Kuo
Jianyi Zhang
Hao Frank Yang
Hai "Helen" Li
85
49
0
03 Apr 2024
Enabling Uncertainty Estimation in Iterative Neural Networks
Enabling Uncertainty Estimation in Iterative Neural Networks
Nikita Durasov
Doruk Öner
Jonathan Donier
Hieu M. Le
Pascal Fua
UQCV
167
9
0
25 Mar 2024
Uncertainty in Graph Neural Networks: A Survey
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
106
10
0
11 Mar 2024
Federated Learning over Connected Modes
Federated Learning over Connected Modes
Dennis Grinwald
Philipp Wiesner
Shinichi Nakajima
FedML
128
0
0
05 Mar 2024
Towards Calibrated Deep Clustering Network
Towards Calibrated Deep Clustering Network
Yuheng Jia
Jianhong Cheng
Hui Liu
Junhui Hou
UQCV
86
1
0
04 Mar 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
189
21
0
28 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
81
7
0
02 Feb 2024
Prevalidated ridge regression is a highly-efficient drop-in replacement for logistic regression for high-dimensional data
Prevalidated ridge regression is a highly-efficient drop-in replacement for logistic regression for high-dimensional data
Angus Dempster
Geoffrey I. Webb
Daniel F. Schmidt
49
0
0
28 Jan 2024
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
Matteo Gambella
Jary Pomponi
Simone Scardapane
Manuel Roveri
51
2
0
24 Jan 2024
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Will LeVine
Benjamin Pikus
Jacob Phillips
Berk Norman
Fernando Amat Gil
Sean Hendryx
OODD
129
1
0
22 Jan 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
113
1
0
17 Jan 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
96
3
0
16 Jan 2024
An Invitation to Deep Reinforcement Learning
An Invitation to Deep Reinforcement Learning
Bernhard Jaeger
Andreas Geiger
OffRL
OOD
111
5
0
13 Dec 2023
Class Uncertainty: A Measure to Mitigate Class Imbalance
Class Uncertainty: A Measure to Mitigate Class Imbalance
Z. S. Baltaci
K. Oksuz
S. Kuzucu
K. Tezoren
B. K. Konar
A. Ozkan
Emre Akbas
Sinan Kalkan
116
2
0
23 Nov 2023
Predicting generalization performance with correctness discriminators
Predicting generalization performance with correctness discriminators
Yuekun Yao
Alexander Koller
81
1
0
15 Nov 2023
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
92
1
0
02 Nov 2023
Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI
Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI
F. Terhag
P. Knechtges
A. Basermann
R. Tempone
118
1
0
30 Oct 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OOD
AAML
173
8
0
28 Aug 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
151
3
0
17 Jul 2023
Calibration Error Estimation Using Fuzzy Binning
Calibration Error Estimation Using Fuzzy Binning
Geetanjali Bihani
Julia Taylor Rayz
154
2
0
30 Apr 2023
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Wenbo Hu
Xin Sun
Qiang liu
Wenbo Hu
Shu Wu
74
0
0
23 Mar 2023
Improving Multi-task Learning via Seeking Task-based Flat Regions
Improving Multi-task Learning via Seeking Task-based Flat Regions
Hoang Phan
Lam C. Tran
Ngoc N. Tran
Nhat Ho
Tuan Truong
Qi Lei
Nhat Ho
Dinh Q. Phung
Trung Le
182
11
0
24 Nov 2022
Exploiting Features and Logits in Heterogeneous Federated Learning
Exploiting Features and Logits in Heterogeneous Federated Learning
Yun-Hin Chan
Edith C.H. Ngai
FedML
65
2
0
27 Oct 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
64
3
0
16 Mar 2022
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Volodymyr Kuleshov
Shachi Deshpande
UQCV
BDL
386
34
0
14 Dec 2021
Resolving Intent Ambiguities by Retrieving Discriminative Clarifying
  Questions
Resolving Intent Ambiguities by Retrieving Discriminative Clarifying Questions
Kaustubh D. Dhole
116
25
0
17 Aug 2020
HAPI: Hardware-Aware Progressive Inference
HAPI: Hardware-Aware Progressive Inference
Stefanos Laskaridis
Stylianos I. Venieris
Hyeji Kim
Nicholas D. Lane
55
46
0
10 Aug 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
156
447
0
17 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
66
84
0
16 Jun 2020
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
340
4,700
0
15 Mar 2017
Regularizing Neural Networks by Penalizing Confident Output
  Distributions
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
153
1,137
0
23 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
729
5,798
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
322
4,624
0
10 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
96
267
0
01 Nov 2016
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
53
104
0
27 Oct 2016
Achieving Human Parity in Conversational Speech Recognition
Achieving Human Parity in Conversational Speech Recognition
Wayne Xiong
J. Droppo
Xuedong Huang
Frank Seide
M. Seltzer
A. Stolcke
Dong Yu
Geoffrey Zweig
78
579
0
17 Oct 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
143
3,441
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
723
36,708
0
25 Aug 2016
Estimating Uncertainty Online Against an Adversary
Estimating Uncertainty Online Against an Adversary
Volodymyr Kuleshov
Stefano Ermon
OOD
38
7
0
13 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
320
7,971
0
23 May 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
85
4,163
0
25 Apr 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
199
2,352
0
30 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.0K
193,426
0
10 Dec 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
230
885
0
06 Nov 2015
Modelling Uncertainty in Deep Learning for Camera Relocalization
Modelling Uncertainty in Deep Learning for Camera Relocalization
Alex Kendall
R. Cipolla
BDL
45
540
0
19 Sep 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
722
9,290
0
06 Jun 2015
Highway Networks
Highway Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
167
1,768
0
03 May 2015
Fast R-CNN
Fast R-CNN
Ross B. Girshick
ObjD
290
25,033
0
30 Apr 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
318
19,609
0
09 Mar 2015
Previous
1234
Next