Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03461
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
12 June 2017
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning"
41 / 191 papers shown
Title
Towards optimal doubly robust estimation of heterogeneous causal effects
Edward H. Kennedy
CML
196
328
0
29 Apr 2020
Learning Continuous Treatment Policy and Bipartite Embeddings for Matching with Heterogeneous Causal Effects
Will Y. Zou
S. Shyam
Michael Mui
Mingshi Wang
Jan Pedersen
Zoubin Ghahramani
CML
53
2
0
21 Apr 2020
Heterogeneous Causal Learning for Effectiveness Optimization in User Marketing
Will Y. Zou
Shuyang Du
James Lee
Jan Pedersen
CML
26
7
0
21 Apr 2020
ParKCa: Causal Inference with Partially Known Causes
Raquel Y. S. Aoki
Martin Ester
CML
70
5
0
17 Mar 2020
CausalML: Python Package for Causal Machine Learning
Huigang Chen
Totte Harinen
Jeong-Yoon Lee
Mike Yung
Zhenyu Zhao
CML
71
114
0
25 Feb 2020
Causal Inference under Networked Interference and Intervention Policy Enhancement
Yunpu Ma
Volker Tresp
CML
88
41
0
20 Feb 2020
Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects
Zijun Gao
Yanjun Han
CML
87
16
0
15 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
123
516
0
05 Feb 2020
Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks
J. Walsh
Aaron M. Smith
Y. Pouliot
David Li-Bland
A. Loukianov
Charles K. Fisher
AI4CE
41
29
0
04 Feb 2020
Treatment effect estimation with disentangled latent factors
Weijia Zhang
Lin Liu
Jiuyong Li
CML
99
89
0
29 Jan 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
128
100
0
21 Jan 2020
A Loss-Function for Causal Machine-Learning
I-Sheng Yang
CML
OOD
16
1
0
02 Jan 2020
Estimation and Validation of Ratio-based Conditional Average Treatment Effects Using Observational Data
Steve Yadlowsky
Fabio Pellegrini
F. Lionetto
S. Braune
L. Tian
CML
16
16
0
15 Dec 2019
Response Transformation and Profit Decomposition for Revenue Uplift Modeling
R. M. Gubela
Stefan Lessmann
S. Jaroszewicz
OffRL
62
51
0
20 Nov 2019
Optimal Experimental Design for Staggered Rollouts
Ruoxuan Xiong
Susan Athey
Mohsen Bayati
Guido Imbens
65
39
0
09 Nov 2019
Group Average Treatment Effects for Observational Studies
D. Jacob
CML
82
20
0
07 Nov 2019
Estimation of Bounds on Potential Outcomes For Decision Making
Maggie Makar
Fredrik D. Johansson
John Guttag
David Sontag
27
1
0
10 Oct 2019
Affordable Uplift: Supervised Randomization in Controlled Experiments
Johannes Haupt
D. Jacob
R. M. Gubela
Stefan Lessmann
92
5
0
01 Oct 2019
Estimation of Personalized Heterogeneous Treatment Effects Using Concatenation and Augmentation of Feature Vectors
Lev V. Utkin
M. V. Kots
V. Chukanov
CML
27
1
0
09 Sep 2019
Uplift Modeling for Multiple Treatments with Cost Optimization
Zhenyu Zhao
Totte Harinen
40
49
0
14 Aug 2019
Linear Aggregation in Tree-based Estimators
Sören R. Künzel
Theo Saarinen
Edward W. Liu
Jasjeet Sekhon
141
10
0
15 Jun 2019
Identify treatment effect patterns for personalised decisions
Jiuyong Li
Lin Liu
Yizhao Han
Saisai Ma
T. Le
Jixue Liu
CML
32
1
0
14 Jun 2019
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments
Vasilis Syrgkanis
Victor Lei
Miruna Oprescu
Maggie Hei
Keith Battocchi
Greg Lewis
CML
50
73
0
24 May 2019
Learning When-to-Treat Policies
Xinkun Nie
Emma Brunskill
Stefan Wager
CML
OffRL
82
92
0
23 May 2019
Experimental Evaluation of Individualized Treatment Rules
Kosuke Imai
Michael Lingzhi Li
65
39
0
14 May 2019
Synthetic learner: model-free inference on treatments over time
Davide Viviano
Jelena Bradic
CML
92
20
0
02 Apr 2019
Machine Learning Methods Economists Should Know About
Susan Athey
Guido Imbens
98
685
0
24 Mar 2019
Classifying Treatment Responders Under Causal Effect Monotonicity
Nathan Kallus
CML
192
16
0
14 Feb 2019
Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding
Muhammad Osama
Dave Zachariah
Thomas B. Schon
33
8
0
28 Jan 2019
Orthogonal Statistical Learning
Dylan J. Foster
Vasilis Syrgkanis
159
174
0
25 Jan 2019
Machine Learning Analysis of Heterogeneity in the Effect of Student Mindset Interventions
Fredrik D. Johansson
8
1
0
14 Nov 2018
Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding
Nathan Kallus
Xiaojie Mao
Angela Zhou
CML
88
94
0
05 Oct 2018
Transfer Learning for Estimating Causal Effects using Neural Networks
Sören R. Künzel
Bradly C. Stadie
N. Vemuri
V. Ramakrishnan
Jasjeet Sekhon
Pieter Abbeel
CML
49
32
0
23 Aug 2018
Local Linear Forests
R. Friedberg
J. Tibshirani
Susan Athey
Stefan Wager
157
92
0
30 Jul 2018
Improving pairwise comparison models using Empirical Bayes shrinkage
Stephen Ragain
A. Peysakhovich
J. Ugander
48
6
0
24 Jul 2018
Representation Balancing MDPs for Off-Policy Policy Evaluation
Yao Liu
Omer Gottesman
Aniruddh Raghu
Matthieu Komorowski
A. Faisal
Finale Doshi-Velez
Emma Brunskill
OffRL
70
75
0
23 May 2018
Confounding-Robust Policy Improvement
Nathan Kallus
Angela Zhou
CML
OffRL
354
153
0
22 May 2018
Uplift Modeling from Separate Labels
Ikko Yamane
Florian Yger
Jamal Atif
Masashi Sugiyama
89
21
0
14 Mar 2018
DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training
Nathan Kallus
CML
OOD
81
77
0
15 Feb 2018
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
Xinkun Nie
Stefan Wager
CML
231
658
0
13 Dec 2017
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
283
288
0
09 Jul 2017
Previous
1
2
3
4