ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05664
19
74

DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training

15 February 2018
Nathan Kallus
    CML
    OOD
ArXivPDFHTML
Abstract

We study optimal covariate balance for causal inferences from observational data when rich covariates and complex relationships necessitate flexible modeling with neural networks. Standard approaches such as propensity weighting and matching/balancing fail in such settings due to miscalibrated propensity nets and inappropriate covariate representations, respectively. We propose a new method based on adversarial training of a weighting and a discriminator network that effectively addresses this methodological gap. This is demonstrated through new theoretical characterizations of the method as well as empirical results using both fully connected architectures to learn complex relationships and convolutional architectures to handle image confounders, showing how this new method can enable strong causal analyses in these challenging settings.

View on arXiv
Comments on this paper