Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03175
Cited By
Recovery Guarantees for One-hidden-layer Neural Networks
10 June 2017
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recovery Guarantees for One-hidden-layer Neural Networks"
50 / 223 papers shown
Title
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
26
1
0
01 Mar 2022
Self-Training: A Survey
Massih-Reza Amini
Vasilii Feofanov
Loïc Pauletto
Lies Hadjadj
Emilie Devijver
Yury Maximov
SSL
40
102
0
24 Feb 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
19
83
0
14 Feb 2022
Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks
Sitan Chen
Aravind Gollakota
Adam R. Klivans
Raghu Meka
24
30
0
10 Feb 2022
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis
Shuai Zhang
Hao Wu
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
SSL
MLT
41
22
0
21 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
25
34
0
20 Jan 2022
On generalization bounds for deep networks based on loss surface implicit regularization
Masaaki Imaizumi
Johannes Schmidt-Hieber
ODL
28
3
0
12 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
46
0
0
03 Jan 2022
Parameter identifiability of a deep feedforward ReLU neural network
Joachim Bona-Pellissier
François Bachoc
François Malgouyres
41
15
0
24 Dec 2021
Risk bounds for aggregated shallow neural networks using Gaussian prior
L. Tinsi
A. Dalalyan
BDL
20
7
0
21 Dec 2021
Efficiently Learning Any One Hidden Layer ReLU Network From Queries
Sitan Chen
Adam R. Klivans
Raghu Meka
MLAU
MLT
45
8
0
08 Nov 2021
Landscape analysis of an improved power method for tensor decomposition
Joe Kileel
T. Klock
João M. Pereira
24
10
0
29 Oct 2021
Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection
Koby Bibas
M. Feder
Tal Hassner
OODD
31
24
0
18 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
31
13
0
12 Oct 2021
Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You
Xiaodi Wu
72
51
0
06 Oct 2021
Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
19
14
0
22 Jul 2021
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
46
8
0
14 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
32
73
0
09 Jul 2021
On the Cryptographic Hardness of Learning Single Periodic Neurons
M. Song
Ilias Zadik
Joan Bruna
AAML
22
27
0
20 Jun 2021
On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting
Shunta Akiyama
Taiji Suzuki
MLT
24
13
0
11 Jun 2021
Achieving Small Test Error in Mildly Overparameterized Neural Networks
Shiyu Liang
Ruoyu Sun
R. Srikant
20
3
0
24 Apr 2021
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
54
207
0
23 Apr 2021
Spurious Local Minima Are Common for Deep Neural Networks with Piecewise Linear Activations
Bo Liu
9
7
0
25 Feb 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
74
45
0
04 Feb 2021
Stable Recovery of Entangled Weights: Towards Robust Identification of Deep Neural Networks from Minimal Samples
Christian Fiedler
M. Fornasier
T. Klock
Michael Rauchensteiner
OOD
22
12
0
18 Jan 2021
Towards Searching Efficient and Accurate Neural Network Architectures in Binary Classification Problems
Yigit Can Alparslan
E. Moyer
I. Isozaki
Daniel Ethan Schwartz
Adam Dunlop
Shesh Dave
Edward J. Kim
MQ
AI4CE
23
6
0
16 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
57
20
0
07 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
60
355
0
17 Dec 2020
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
19
32
0
14 Dec 2020
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
On InstaHide, Phase Retrieval, and Sparse Matrix Factorization
Sitan Chen
Xiaoxiao Li
Zhao Song
Danyang Zhuo
21
13
0
23 Nov 2020
Neural Network Training Techniques Regularize Optimization Trajectory: An Empirical Study
Cheng Chen
Junjie Yang
Yi Zhou
13
0
0
13 Nov 2020
Algorithms and Hardness for Linear Algebra on Geometric Graphs
Josh Alman
T. Chu
Aaron Schild
Zhao Song
57
29
0
04 Nov 2020
How Does the Task Landscape Affect MAML Performance?
Liam Collins
Aryan Mokhtari
Sanjay Shakkottai
27
3
0
27 Oct 2020
MixCon: Adjusting the Separability of Data Representations for Harder Data Recovery
Xiaoxiao Li
Yangsibo Huang
Binghui Peng
Zhao Song
Keqin Li
MIACV
30
1
0
22 Oct 2020
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
8
23
0
04 Oct 2020
Learning Deep ReLU Networks Is Fixed-Parameter Tractable
Sitan Chen
Adam R. Klivans
Raghu Meka
22
36
0
28 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Nonparametric Learning of Two-Layer ReLU Residual Units
Zhunxuan Wang
Linyun He
Chunchuan Lyu
Shay B. Cohen
MLT
OffRL
33
1
0
17 Aug 2020
Learnability and Robustness of Shallow Neural Networks Learned With a Performance-Driven BP and a Variant PSO For Edge Decision-Making
Hongmei He
Mengyuan Chen
Gang Xu
Zhilong Zhu
Zhenhuan Zhu
16
7
0
13 Aug 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
19
5
0
25 Jul 2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
MLT
20
28
0
09 Jul 2020
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma
Yi Zhou
19
3
0
07 Jul 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
MLT
AI4CE
33
33
0
25 Jun 2020
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks
Ilias Diakonikolas
D. Kane
Vasilis Kontonis
Nikos Zarifis
9
65
0
22 Jun 2020
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent
Surbhi Goel
Aravind Gollakota
Zhihan Jin
Sushrut Karmalkar
Adam R. Klivans
MLT
ODL
16
70
0
22 Jun 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
29
82
0
20 Jun 2020
Previous
1
2
3
4
5
Next