Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03175
Cited By
Recovery Guarantees for One-hidden-layer Neural Networks
10 June 2017
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Recovery Guarantees for One-hidden-layer Neural Networks"
50 / 223 papers shown
Title
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
116
35
0
12 May 2022
An Information-Theoretic Framework for Supervised Learning
Hong Jun Jeon
Yifan Zhu
Benjamin Van Roy
92
7
0
01 Mar 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
79
1
0
01 Mar 2022
Self-Training: A Survey
Massih-Reza Amini
Vasilii Feofanov
Loïc Pauletto
Lies Hadjadj
Emilie Devijver
Yury Maximov
SSL
124
107
0
24 Feb 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
93
90
0
14 Feb 2022
Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks
Sitan Chen
Aravind Gollakota
Adam R. Klivans
Raghu Meka
72
31
0
10 Feb 2022
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis
Shuai Zhang
Ming Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
SSL
MLT
111
23
0
21 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
106
38
0
20 Jan 2022
On generalization bounds for deep networks based on loss surface implicit regularization
Masaaki Imaizumi
Johannes Schmidt-Hieber
ODL
83
3
0
12 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
77
0
0
03 Jan 2022
Parameter identifiability of a deep feedforward ReLU neural network
Joachim Bona-Pellissier
François Bachoc
François Malgouyres
95
17
0
24 Dec 2021
Risk bounds for aggregated shallow neural networks using Gaussian prior
L. Tinsi
A. Dalalyan
BDL
80
7
0
21 Dec 2021
Efficiently Learning Any One Hidden Layer ReLU Network From Queries
Sitan Chen
Adam R. Klivans
Raghu Meka
MLAU
MLT
108
8
0
08 Nov 2021
Landscape analysis of an improved power method for tensor decomposition
Joe Kileel
T. Klock
João M. Pereira
59
10
0
29 Oct 2021
Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection
Koby Bibas
M. Feder
Tal Hassner
OODD
79
24
0
18 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
85
13
0
12 Oct 2021
Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You
Xiaodi Wu
135
54
0
06 Oct 2021
Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
68
14
0
22 Jul 2021
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
103
8
0
14 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
88
75
0
09 Jul 2021
On the Cryptographic Hardness of Learning Single Periodic Neurons
M. Song
Ilias Zadik
Joan Bruna
AAML
68
28
0
20 Jun 2021
On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting
Shunta Akiyama
Taiji Suzuki
MLT
116
13
0
11 Jun 2021
Achieving Small Test Error in Mildly Overparameterized Neural Networks
Shiyu Liang
Ruoyu Sun
R. Srikant
61
3
0
24 Apr 2021
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
98
219
0
23 Apr 2021
Spurious Local Minima Are Common for Deep Neural Networks with Piecewise Linear Activations
Bo Liu
53
7
0
25 Feb 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
145
46
0
04 Feb 2021
Stable Recovery of Entangled Weights: Towards Robust Identification of Deep Neural Networks from Minimal Samples
Christian Fiedler
M. Fornasier
T. Klock
Michael Rauchensteiner
OOD
50
13
0
18 Jan 2021
Towards Searching Efficient and Accurate Neural Network Architectures in Binary Classification Problems
Yigit Can Alparslan
E. Moyer
I. Isozaki
Daniel Ethan Schwartz
Adam Dunlop
Shesh Dave
Edward J. Kim
MQ
AI4CE
127
7
0
16 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
122
21
0
07 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
189
377
0
17 Dec 2020
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
171
173
0
15 Dec 2020
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
91
33
0
14 Dec 2020
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
97
1
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
105
37
0
24 Nov 2020
On InstaHide, Phase Retrieval, and Sparse Matrix Factorization
Sitan Chen
Xiaoxiao Li
Zhao Song
Danyang Zhuo
77
13
0
23 Nov 2020
Neural Network Training Techniques Regularize Optimization Trajectory: An Empirical Study
Cheng Chen
Junjie Yang
Yi Zhou
45
0
0
13 Nov 2020
Algorithms and Hardness for Linear Algebra on Geometric Graphs
Josh Alman
T. Chu
Aaron Schild
Zhao Song
120
30
0
04 Nov 2020
How Does the Task Landscape Affect MAML Performance?
Liam Collins
Aryan Mokhtari
Sanjay Shakkottai
78
4
0
27 Oct 2020
MixCon: Adjusting the Separability of Data Representations for Harder Data Recovery
Xiaoxiao Li
Yangsibo Huang
Binghui Peng
Zhao Song
Keqin Li
MIACV
74
1
0
22 Oct 2020
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
80
24
0
04 Oct 2020
Learning Deep ReLU Networks Is Fixed-Parameter Tractable
Sitan Chen
Adam R. Klivans
Raghu Meka
87
38
0
28 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
71
43
0
21 Sep 2020
Nonparametric Learning of Two-Layer ReLU Residual Units
Zhunxuan Wang
Linyun He
Chunchuan Lyu
Shay B. Cohen
MLT
OffRL
201
1
0
17 Aug 2020
Learnability and Robustness of Shallow Neural Networks Learned With a Performance-Driven BP and a Variant PSO For Edge Decision-Making
Hongmei He
Mengyuan Chen
Gang Xu
Zhilong Zhu
Zhenhuan Zhu
40
7
0
13 Aug 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
49
5
0
25 Jul 2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
MLT
95
27
0
09 Jul 2020
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma
Yi Zhou
47
3
0
07 Jul 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
110
107
0
25 Jun 2020
Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
MLT
AI4CE
120
34
0
25 Jun 2020
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks
Ilias Diakonikolas
D. Kane
Vasilis Kontonis
Nikos Zarifis
76
66
0
22 Jun 2020
Previous
1
2
3
4
5
Next