Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.01445
Cited By
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
5 June 2017
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Batched Large-scale Bayesian Optimization in High-dimensional Spaces"
43 / 43 papers shown
Title
Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
Natalie Maus
Kyurae Kim
Yimeng Zeng
Haydn Thomas Jones
Fangping Wan
Marcelo Der Torossian Torres
Cesar de la Fuente-Nunez
Jacob R. Gardner
80
0
0
31 Jan 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
44
0
0
28 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
132
0
0
31 Dec 2024
Respecting the limit:Bayesian optimization with a bound on the optimal value
Hanyang Wang
Juergen Branke
Matthias Poloczek
40
0
0
07 Nov 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
76
0
0
01 Jul 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Single and Multi-Objective Optimization Benchmark Problems Focusing on Human-Powered Aircraft Design
Nobuo Namura
20
1
0
14 Dec 2023
Deep Kernel and Image Quality Estimators for Optimizing Robotic Ultrasound Controller using Bayesian Optimization
Deepak Raina
S. Chandrashekhara
Richard M. Voyles
J. Wachs
S. K. Saha
39
6
0
11 Oct 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
19
36
0
22 Apr 2023
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
11
4
0
16 Feb 2023
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
29
5
0
07 Feb 2023
Local Bayesian optimization via maximizing probability of descent
Quan Nguyen
Kaiwen Wu
Jacob R. Gardner
Roman Garnett
17
23
0
21 Oct 2022
Pareto Set Learning for Expensive Multi-Objective Optimization
Xi Lin
Zhiyuan Yang
Xiao-Yan Zhang
Qingfu Zhang
36
54
0
16 Oct 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
Self-focusing virtual screening with active design space pruning
David E. Graff
Matteo Aldeghi
Joseph A. Morrone
K. E. Jordan
Edward O. Pyzer-Knapp
Connor W. Coley
29
24
0
03 May 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
13
10
0
02 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
51
69
0
28 Jan 2022
Efficient Exploration in Binary and Preferential Bayesian Optimization
T. Fauvel
M. Chalk
22
7
0
18 Oct 2021
A portfolio approach to massively parallel Bayesian optimization
M. Binois
Nicholson T. Collier
J. Ozik
24
9
0
18 Oct 2021
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
19
1
0
07 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
14
18
0
08 Jul 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
79
17
0
23 Apr 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
25
5
0
05 Apr 2021
Uncertainty quantification and exploration-exploitation trade-off in humans
Antonio Candelieri
Andrea Ponti
F. Archetti
21
4
0
05 Feb 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
19
9
0
06 Jan 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
25
17
0
24 Dec 2020
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
87
142
0
13 Dec 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
35
126
0
01 Jul 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
27
82
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
29
54
0
10 Mar 2020
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
19
27
0
30 Dec 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
33
449
0
03 Oct 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
W. Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric P. Xing
29
174
0
15 Mar 2019
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
55
34
0
06 Feb 2018
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
1