Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.00473
Cited By
Deep Learning: A Bayesian Perspective
1 June 2017
Nicholas G. Polson
Vadim Sokolov
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning: A Bayesian Perspective"
42 / 42 papers shown
Title
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Nian Yao
Pervez Ali
Xihua Tao
Lingjiong Zhu
51
0
0
24 Mar 2025
Kolmogorov GAM Networks are all you need!
Sarah Polson
Vadim Sokolov
39
0
0
03 Jan 2025
Sparse Deep Learning Models with the
ℓ
1
\ell_1
ℓ
1
Regularization
Lixin Shen
Rui Wang
Yuesheng Xu
Mingsong Yan
40
0
0
05 Aug 2024
Fusing Climate Data Products using a Spatially Varying Autoencoder
Jacob A. Johnson
Matthew J. Heaton
William F. Christensen
Lynsie R. Warr
S. Rupper
AI4CE
31
0
0
12 Mar 2024
Deep Neural Networks for Semiparametric Frailty Models via H-likelihood
Hangbin Lee
I. Ha
Youngjo Lee
22
0
0
13 Jul 2023
Object Recognition in Different Lighting Conditions at Various Angles by Deep Learning Method
Imran Khan Mirani
Tianhua Chen
Malak Abid Ali Khan
Syed Muhammad Aamir
Waseef Menhaj
ObjD
19
8
0
18 Oct 2022
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
47
7
0
22 Sep 2022
How to Combine Variational Bayesian Networks in Federated Learning
Atahan Ozer
Kadir Burak Buldu
Abdullah Akgul
Gözde B. Ünal
FedML
38
5
0
22 Jun 2022
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Neil K. Chada
Ajay Jasra
K. Law
Sumeetpal S. Singh
BDL
UQCV
83
3
0
24 Mar 2022
Uncertainty-Aware Deep Multi-View Photometric Stereo
Berk Kaya
Suryansh Kumar
C. Oliveira
V. Ferrari
Luc Van Gool
3DV
40
30
0
26 Feb 2022
Efficient Online Bayesian Inference for Neural Bandits
Gerardo Duran-Martín
Aleyna Kara
Kevin Patrick Murphy
BDL
32
13
0
01 Dec 2021
Low-rank variational Bayes correction to the Laplace method
J. van Niekerk
Haavard Rue
BDL
26
13
0
25 Nov 2021
Merging Two Cultures: Deep and Statistical Learning
A. Bhadra
J. Datta
Nicholas G. Polson
Vadim Sokolov
Jianeng Xu
BDL
48
9
0
22 Oct 2021
Marginally calibrated response distributions for end-to-end learning in autonomous driving
Clara Hoffmann
Nadja Klein
11
2
0
03 Oct 2021
Bayesian graph convolutional neural networks via tempered MCMC
Rohitash Chandra
A. Bhagat
Manavendra Maharana
P. Krivitsky
GNN
BDL
28
16
0
17 Apr 2021
Revisiting Bayesian Autoencoders with MCMC
Rohitash Chandra
Mahir Jain
Manavendra Maharana
P. Krivitsky
UQCV
BDL
42
17
0
13 Apr 2021
Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study
B. Grimstad
M. Hotvedt
Anders T. Sandnes
O. Kolbjørnsen
Lars Imsland
37
21
0
02 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
56
1,883
0
12 Nov 2020
Computer Model Calibration with Time Series Data using Deep Learning and Quantile Regression
S. Bhatnagar
Won Chang
Jiali Wang
AI4TS
17
7
0
29 Aug 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray L. Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
29
610
0
14 Jul 2020
A Bayesian - Deep Learning model for estimating Covid-19 evolution in Spain
S. Cabras
32
25
0
20 May 2020
Prior choice affects ability of Bayesian neural networks to identify unknowns
D. Silvestro
Tobias Andermann
UQCV
BDL
16
23
0
11 May 2020
Industrial Forecasting with Exponentially Smoothed Recurrent Neural Networks
M. Dixon
AI4TS
31
14
0
09 Apr 2020
Uncertainty Quantification for Sparse Deep Learning
Yuexi Wang
Veronika Rockova
BDL
UQCV
36
31
0
26 Feb 2020
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
44
50
0
15 Oct 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
37
14
0
26 Aug 2019
Scalable Modeling of Spatiotemporal Data using the Variational Autoencoder: an Application in Glaucoma
S. Berchuck
Felipe A. Medeiros
S. Mukherjee
BDL
34
3
0
24 Aug 2019
Seeing Convolution Through the Eyes of Finite Transformation Semigroup Theory: An Abstract Algebraic Interpretation of Convolutional Neural Networks
Andrew Hryniowski
A. Wong
16
0
0
26 May 2019
Leveraging Uncertainty in Deep Learning for Selective Classification
M. Yildirim
M. Ozer
H. Davulcu
16
10
0
23 May 2019
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCV
BDL
30
3
0
22 Mar 2019
Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data
C. Wikle
BDL
40
19
0
22 Feb 2019
Understanding Priors in Bayesian Neural Networks at the Unit Level
M. Vladimirova
Jakob Verbeek
Pablo Mesejo
Julyan Arbel
BDL
UQCV
11
4
0
11 Oct 2018
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINN
BDL
AI4CE
29
14
0
26 Aug 2018
Deep Learning for Energy Markets
Michael Polson
Vadim Sokolov
AI4TS
19
26
0
16 Aug 2018
Deep Learning
Nicholas G. Polson
Vadim Sokolov
AI4CE
BDL
37
1
0
20 Jul 2018
Bayesian Deep Net GLM and GLMM
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
BDL
17
73
0
25 May 2018
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
30
88
0
24 Mar 2018
Predictive Learning: Using Future Representation Learning Variantial Autoencoder for Human Action Prediction
Runsheng Yu
Zhenyu Shi
Qiongxiong Ma
Laiyun Qing
3DH
DRL
31
4
0
25 Nov 2017
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
Patrick L. McDermott
C. Wikle
BDL
UQCV
37
96
0
02 Nov 2017
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading
M. Dixon
Nicholas G. Polson
Vadim Sokolov
AI4TS
35
67
0
27 May 2017
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
38
73
0
07 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1