Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08821
Cited By
Causal Effect Inference with Deep Latent-Variable Models
24 May 2017
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Effect Inference with Deep Latent-Variable Models"
50 / 401 papers shown
Title
Invariant Representation Learning for Treatment Effect Estimation
Claudia Shi
Victor Veitch
David M. Blei
OOD
CML
6
29
0
24 Nov 2020
Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder
Hyemi Kim
Seungjae Shin
Joonho Jang
Kyungwoo Song
Weonyoung Joo
Wanmo Kang
Il-Chul Moon
BDL
CML
6
57
0
24 Nov 2020
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
6
6
0
23 Nov 2020
A novel method for Causal Structure Discovery from EHR data, a demonstration on type-2 diabetes mellitus
Xinpeng Shen
Sisi Ma
P. Vemuri
Regina Castro
P. Caraballo
György J. Simon
CML
11
1
0
11 Nov 2020
Incorporating Causal Effects into Deep Learning Predictions on EHR Data
Jia Li
Haoyu Yang
X. Jia
Vipin Kumar
M. Steinbach
György J. Simon
BDL
CML
28
1
0
11 Nov 2020
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
12
108
0
04 Nov 2020
High-Dimensional Feature Selection for Sample Efficient Treatment Effect Estimation
Kristjan Greenewald
Dmitriy A. Katz-Rogozhnikov
Karthikeyan Shanmugam
CML
39
9
0
03 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Representation Learning for Integrating Multi-domain Outcomes to Optimize Individualized Treatments
Yuan Chen
D. Zeng
Tianchen Xu
Yuanjia Wang
AI4CE
9
3
0
30 Oct 2020
Counterfactual Representation Learning with Balancing Weights
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
CML
OOD
12
63
0
23 Oct 2020
Poincare: Recommending Publication Venues via Treatment Effect Estimation
Ryoma Sato
M. Yamada
H. Kashima
CML
6
2
0
19 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
16
18
0
06 Oct 2020
Targeted VAE: Variational and Targeted Learning for Causal Inference
M. Vowels
Necati Cihan Camgöz
Richard Bowden
BDL
OOD
CML
11
8
0
28 Sep 2020
Sufficient Dimension Reduction for Average Causal Effect Estimation
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
CML
11
14
0
14 Sep 2020
Adversarial Learning for Counterfactual Fairness
Vincent Grari
Sylvain Lamprier
Marcin Detyniecki
FaML
17
22
0
30 Aug 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
31
27
0
27 Aug 2020
Improving Fair Predictions Using Variational Inference In Causal Models
Rik Helwegen
Christos Louizos
Patrick Forré
FaML
19
6
0
25 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
12
9
0
01 Aug 2020
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett
Nathan Kallus
Lihong Li
Ali Mousavi
OffRL
35
43
0
27 Jul 2020
Causal Inference using Gaussian Processes with Structured Latent Confounders
Sam Witty
Kenta Takatsu
David D. Jensen
Vikash K. Mansinghka
CML
13
19
0
14 Jul 2020
A unified survey of treatment effect heterogeneity modeling and uplift modeling
Weijia Zhang
Jiuyong Li
Lin Liu
CML
12
56
0
14 Jul 2020
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
14
76
0
01 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
14
72
0
01 Jul 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Lowe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
22
126
0
18 Jun 2020
Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification
Hyun-Suk Lee
Yao Zhang
W. Zame
Cong Shen
Jang-Won Lee
M. Schaar
CML
6
18
0
14 Jun 2020
Structure by Architecture: Structured Representations without Regularization
Felix Leeb
Giulia Lanzillotta
Yashas Annadani
M. Besserve
Stefan Bauer
Bernhard Schölkopf
OOD
CML
46
8
0
14 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
33
229
0
11 Jun 2020
Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates
Katherine A. Keith
David D. Jensen
Brendan O'Connor
CML
12
112
0
01 May 2020
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
L. Vig
Gautam M. Shroff
CML
21
7
0
28 Apr 2020
Causal Modeling with Stochastic Confounders
Thanh Vinh Vo
Pengfei Wei
Wicher P. Bergsma
Tze-Yun Leong
BDL
CML
11
0
0
24 Apr 2020
Learning Continuous Treatment Policy and Bipartite Embeddings for Matching with Heterogeneous Causal Effects
Will Y. Zou
S. Shyam
Michael Mui
Mingshi Wang
Jan Pedersen
Zoubin Ghahramani
CML
12
2
0
21 Apr 2020
Estimating Individual Treatment Effects through Causal Populations Identification
Céline Beji
Michaël Bon
Florian Yger
Jamal Atif
CML
6
3
0
10 Apr 2020
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
12
25
0
01 Apr 2020
Learning Latent Causal Structures with a Redundant Input Neural Network
Jonathan D. Young
Bryan Andrews
G. Cooper
Xinghua Lu
CML
11
8
0
29 Mar 2020
A general framework for causal classification
Jiuyong Li
Weijia Zhang
Lin Liu
Kui Yu
T. Le
Jixue Liu
CML
16
9
0
25 Mar 2020
ParKCa: Causal Inference with Partially Known Causes
Raquel Y. S. Aoki
Martin Ester
CML
11
4
0
17 Mar 2020
Causal Inference With Selectively Deconfounded Data
Kyra Gan
Andrew A. Li
Zachary Chase Lipton
S. Tayur
CML
4
7
0
25 Feb 2020
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
29
12
0
25 Feb 2020
Towards unique and unbiased causal effect estimation from data with hidden variables
Debo Cheng
Jiuyong Li
Lin Liu
Kui Yu
T. Le
Jixue Liu
CML
11
0
0
24 Feb 2020
Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning
Nathan Kallus
Angela Zhou
OffRL
38
58
0
11 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
18
498
0
05 Feb 2020
Treatment effect estimation with disentangled latent factors
Weijia Zhang
Lin Liu
Jiuyong Li
CML
18
88
0
29 Jan 2020
Causal query in observational data with hidden variables
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
Kui Yu
T. Le
CML
18
11
0
28 Jan 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
26
98
0
21 Jan 2020
An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children's Oncology Group
Cédric Beaulac
Jeffrey S. Rosenthal
Q. Pei
D. Friedman
S. Wolden
D. Hodgson
10
9
0
15 Jan 2020
Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data
Ruocheng Guo
Jundong Li
Huan Liu
CML
OffRL
30
21
0
22 Dec 2019
Reducing Selection Bias in Counterfactual Reasoning for Individual Treatment Effects Estimation
Zichen Zhang
Qingfeng Lan
Lei Ding
Yue Wang
Negar Hassanpour
Russell Greiner
BDL
CML
22
9
0
19 Dec 2019
MetaCI: Meta-Learning for Causal Inference in a Heterogeneous Population
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
L. Vig
Gautam M. Shroff
OOD
19
12
0
09 Dec 2019
Previous
1
2
3
4
5
6
7
8
9
Next