ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11497
9
0

Causal Modeling with Stochastic Confounders

24 April 2020
Thanh Vinh Vo
Pengfei Wei
Wicher P. Bergsma
Tze-Yun Leong
    BDL
    CML
ArXivPDFHTML
Abstract

This work extends causal inference with stochastic confounders. We propose a new approach to variational estimation for causal inference based on a representer theorem with a random input space. We estimate causal effects involving latent confounders that may be interdependent and time-varying from sequential, repeated measurements in an observational study. Our approach extends current work that assumes independent, non-temporal latent confounders, with potentially biased estimators. We introduce a simple yet elegant algorithm without parametric specification on model components. Our method avoids the need for expensive and careful parameterization in deploying complex models, such as deep neural networks, for causal inference in existing approaches. We demonstrate the effectiveness of our approach on various benchmark temporal datasets.

View on arXiv
Comments on this paper