Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08741
Cited By
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
24 May 2017
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Train longer, generalize better: closing the generalization gap in large batch training of neural networks"
50 / 156 papers shown
Title
On the Pitfalls of Batch Normalization for End-to-End Video Learning: A Study on Surgical Workflow Analysis
Dominik Rivoir
Isabel Funke
Stefanie Speidel
24
17
0
15 Mar 2022
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
26
148
0
07 Mar 2022
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
32
14
0
07 Mar 2022
Harmony: Overcoming the Hurdles of GPU Memory Capacity to Train Massive DNN Models on Commodity Servers
Youjie Li
Amar Phanishayee
D. Murray
Jakub Tarnawski
N. Kim
19
19
0
02 Feb 2022
Memory-Efficient Backpropagation through Large Linear Layers
Daniel Bershatsky
A. Mikhalev
A. Katrutsa
Julia Gusak
D. Merkulov
Ivan Oseledets
19
4
0
31 Jan 2022
On the Power-Law Hessian Spectrums in Deep Learning
Zeke Xie
Qian-Yuan Tang
Yunfeng Cai
Mingming Sun
P. Li
ODL
42
9
0
31 Jan 2022
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
36
100
0
28 Jan 2022
Non-Asymptotic Analysis of Online Multiplicative Stochastic Gradient Descent
Riddhiman Bhattacharya
Tiefeng Jiang
16
0
0
14 Dec 2021
On Large Batch Training and Sharp Minima: A Fokker-Planck Perspective
Xiaowu Dai
Yuhua Zhu
27
4
0
02 Dec 2021
Hybrid BYOL-ViT: Efficient approach to deal with small datasets
Safwen Naimi
Rien van Leeuwen
W. Souidène
S. B. Saoud
SSL
ViT
25
2
0
08 Nov 2021
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
Hikaru Ibayashi
Masaaki Imaizumi
34
4
0
07 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Trade-offs of Local SGD at Scale: An Empirical Study
Jose Javier Gonzalez Ortiz
Jonathan Frankle
Michael G. Rabbat
Ari S. Morcos
Nicolas Ballas
FedML
43
19
0
15 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
41
28
0
06 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
How to Inject Backdoors with Better Consistency: Logit Anchoring on Clean Data
Zhiyuan Zhang
Lingjuan Lyu
Weiqiang Wang
Lichao Sun
Xu Sun
21
35
0
03 Sep 2021
Shift-Curvature, SGD, and Generalization
Arwen V. Bradley
C. Gomez-Uribe
Manish Reddy Vuyyuru
35
2
0
21 Aug 2021
Logit Attenuating Weight Normalization
Aman Gupta
R. Ramanath
Jun Shi
Anika Ramachandran
Sirou Zhou
Mingzhou Zhou
S. Keerthi
40
1
0
12 Aug 2021
Online Evolutionary Batch Size Orchestration for Scheduling Deep Learning Workloads in GPU Clusters
Chen Sun
Shenggui Li
Jinyue Wang
Jun Yu
54
47
0
08 Aug 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
Bag of Tricks for Neural Architecture Search
T. Elsken
B. Staffler
Arber Zela
J. H. Metzen
Frank Hutter
27
5
0
08 Jul 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
21
113
0
15 Jun 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
28
13
0
01 Jun 2021
"BNN - BN = ?": Training Binary Neural Networks without Batch Normalization
Tianlong Chen
Zhenyu (Allen) Zhang
Xu Ouyang
Zechun Liu
Zhiqiang Shen
Zhangyang Wang
MQ
43
36
0
16 Apr 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
27
29
0
31 Mar 2021
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
44
78
0
24 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Straggler-Resilient Distributed Machine Learning with Dynamic Backup Workers
Guojun Xiong
Gang Yan
Rahul Singh
Jian Li
28
12
0
11 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
A spin-glass model for the loss surfaces of generative adversarial networks
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
GAN
30
12
0
07 Jan 2021
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
30
173
0
18 Dec 2020
Data optimization for large batch distributed training of deep neural networks
Shubhankar Gahlot
Junqi Yin
Mallikarjun Shankar
16
1
0
16 Dec 2020
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
Kangqiao Liu
Liu Ziyin
Masakuni Ueda
MLT
61
37
0
07 Dec 2020
EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation using Accelerated Neuroevolution with Weight Transfer
William J. McNally
Kanav Vats
Alexander Wong
J. McPhee
3DH
30
16
0
17 Nov 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
30
95
0
10 Oct 2020
Improved generalization by noise enhancement
Takashi Mori
Masahito Ueda
24
3
0
28 Sep 2020
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
BroadFace: Looking at Tens of Thousands of People at Once for Face Recognition
Y. Kim
Wonpyo Park
Jongju Shin
CVBM
27
51
0
15 Aug 2020
Stochastic Normalized Gradient Descent with Momentum for Large-Batch Training
Shen-Yi Zhao
Chang-Wei Shi
Yin-Peng Xie
Wu-Jun Li
ODL
26
8
0
28 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
27
37
0
09 Jul 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems
Preetum Nakkiran
MLT
31
21
0
15 May 2020
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
19
20
0
02 Apr 2020
AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks
Majed El Helou
Frederike Dumbgen
Sabine Süsstrunk
CLL
AI4CE
30
2
0
07 Mar 2020
Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks
Soham De
Samuel L. Smith
ODL
19
20
0
24 Feb 2020
The Two Regimes of Deep Network Training
Guillaume Leclerc
A. Madry
19
45
0
24 Feb 2020
A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima
Zeke Xie
Issei Sato
Masashi Sugiyama
ODL
28
17
0
10 Feb 2020
Stochastic Weight Averaging in Parallel: Large-Batch Training that Generalizes Well
Vipul Gupta
S. Serrano
D. DeCoste
MoMe
38
55
0
07 Jan 2020
Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia
Hao Su
27
19
0
19 Nov 2019
Previous
1
2
3
4
Next