ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00987
25
4

On Large Batch Training and Sharp Minima: A Fokker-Planck Perspective

2 December 2021
Xiaowu Dai
Yuhua Zhu
ArXivPDFHTML
Abstract

We study the statistical properties of the dynamic trajectory of stochastic gradient descent (SGD). We approximate the mini-batch SGD and the momentum SGD as stochastic differential equations (SDEs). We exploit the continuous formulation of SDE and the theory of Fokker-Planck equations to develop new results on the escaping phenomenon and the relationship with large batch and sharp minima. In particular, we find that the stochastic process solution tends to converge to flatter minima regardless of the batch size in the asymptotic regime. However, the convergence rate is rigorously proven to depend on the batch size. These results are validated empirically with various datasets and models.

View on arXiv
Comments on this paper