ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08475
  4. Cited By
Formal Guarantees on the Robustness of a Classifier against Adversarial
  Manipulation

Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation

23 May 2017
Matthias Hein
Maksym Andriushchenko
    AAML
ArXivPDFHTML

Papers citing "Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation"

50 / 119 papers shown
Title
RDI: An adversarial robustness evaluation metric for deep neural networks based on sample clustering features
RDI: An adversarial robustness evaluation metric for deep neural networks based on sample clustering features
Jialei Song
Xingquan Zuo
Feiyang Wang
Hai Huang
Tianle Zhang
AAML
85
0
0
16 Apr 2025
CeTAD: Towards Certified Toxicity-Aware Distance in Vision Language Models
CeTAD: Towards Certified Toxicity-Aware Distance in Vision Language Models
Xiangyu Yin
Jiaxu Liu
Zhen Chen
Jinwei Hu
Yi Dong
Xiaowei Huang
Wenjie Ruan
AAML
50
0
0
08 Mar 2025
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
60
20
0
31 Dec 2024
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
44
3
0
03 Jul 2024
Spectral regularization for adversarially-robust representation learning
Spectral regularization for adversarially-robust representation learning
Sheng Yang
Jacob A. Zavatone-Veth
C. Pehlevan
AAML
OOD
49
0
0
27 May 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
48
2
0
27 May 2024
$H$-Consistency Guarantees for Regression
HHH-Consistency Guarantees for Regression
Anqi Mao
M. Mohri
Yutao Zhong
33
9
0
28 Mar 2024
A Random Ensemble of Encrypted Vision Transformers for Adversarially
  Robust Defense
A Random Ensemble of Encrypted Vision Transformers for Adversarially Robust Defense
Ryota Iijima
Sayaka Shiota
Hitoshi Kiya
36
6
0
11 Feb 2024
How Smooth Is Attention?
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
27
2
0
26 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
Prashanth Krishnamurthy
Farshad Khorrami
Siddharth Garg
43
5
0
27 Oct 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Robust Ranking Explanations
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
Robust low-rank training via approximate orthonormal constraints
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
Beyond Empirical Risk Minimization: Local Structure Preserving
  Regularization for Improving Adversarial Robustness
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
15
0
0
29 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
44
34
0
19 Mar 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
33
52
0
06 Mar 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive
  Smoothing
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
33
18
0
29 Jan 2023
PCV: A Point Cloud-Based Network Verifier
PCV: A Point Cloud-Based Network Verifier
A. Sarker
Farzana Yasmin Ahmad
Matthew B. Dwyer
AAML
3DPC
30
1
0
27 Jan 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
24
2
0
27 Jan 2023
Neural networks learn to magnify areas near decision boundaries
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
25
6
0
26 Jan 2023
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
  Applications with Categorical Inputs
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs
Helene Orsini
Hongyan Bao
Yujun Zhou
Xiangrui Xu
Yufei Han
Longyang Yi
Wei Wang
Xin Gao
Xiangliang Zhang
AAML
23
1
0
13 Dec 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
21
7
0
25 Oct 2022
Robust Empirical Risk Minimization with Tolerance
Robust Empirical Risk Minimization with Tolerance
Robi Bhattacharjee
Max Hopkins
Akash Kumar
Hantao Yu
Kamalika Chaudhuri
OOD
33
8
0
02 Oct 2022
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities:
  Robustness, Safety, and Generalizability
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability
Mengdi Xu
Zuxin Liu
Peide Huang
Wenhao Ding
Zhepeng Cen
Bo-wen Li
Ding Zhao
74
45
0
16 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the
  ugly (initialization)
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
30
0
0
17 Aug 2022
Decorrelative Network Architecture for Robust Electrocardiogram
  Classification
Decorrelative Network Architecture for Robust Electrocardiogram Classification
Christopher Wiedeman
Ge Wang
OOD
13
2
0
19 Jul 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
Efficiently Training Low-Curvature Neural Networks
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms
  for Neural Networks
FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks
Kiarash Mohammadi
Aishwarya Sivaraman
G. Farnadi
25
5
0
01 Jun 2022
An Analytic Framework for Robust Training of Artificial Neural Networks
An Analytic Framework for Robust Training of Artificial Neural Networks
R. Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
19
0
0
26 May 2022
Software Testing for Machine Learning
Software Testing for Machine Learning
D. Marijan
A. Gotlieb
AAML
22
27
0
30 Apr 2022
A Quantitative Geometric Approach to Neural-Network Smoothness
A Quantitative Geometric Approach to Neural-Network Smoothness
Zehao Wang
Gautam Prakriya
S. Jha
37
13
0
02 Mar 2022
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
Can Zhou
R. A. Shaikh
Yiran Li
Amin Farjudian
OOD
35
4
0
01 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
85
46
0
20 Feb 2022
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Robust and Information-theoretically Safe Bias Classifier against
  Adversarial Attacks
Robust and Information-theoretically Safe Bias Classifier against Adversarial Attacks
Lijia Yu
Xiao-Shan Gao
AAML
21
5
0
08 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local
  Lipschitz Bounds
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
29
76
0
02 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust
  Training
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
27
106
0
26 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random
  Forest
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
35
4
0
16 Sep 2021
On the regularized risk of distributionally robust learning over deep
  neural networks
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
45
10
0
13 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
How to Certify Machine Learning Based Safety-critical Systems? A
  Systematic Literature Review
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
30
66
0
26 Jul 2021
Provable Lipschitz Certification for Generative Models
Provable Lipschitz Certification for Generative Models
Matt Jordan
A. Dimakis
22
14
0
06 Jul 2021
Attack Transferability Characterization for Adversarially Robust
  Multi-label Classification
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
23
4
0
29 Jun 2021
Partial success in closing the gap between human and machine vision
Partial success in closing the gap between human and machine vision
Robert Geirhos
Kantharaju Narayanappa
Benjamin Mitzkus
Tizian Thieringer
Matthias Bethge
Felix Wichmann
Wieland Brendel
VLM
AAML
48
221
0
14 Jun 2021
Sparta: Spatially Attentive and Adversarially Robust Activation
Sparta: Spatially Attentive and Adversarially Robust Activation
Qing-Wu Guo
Felix Juefei Xu
Changqing Zhou
Wei Feng
Yang Liu
Song Wang
AAML
33
4
0
18 May 2021
123
Next