Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07880
Cited By
Reducing Reparameterization Gradient Variance
22 May 2017
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reducing Reparameterization Gradient Variance"
22 / 22 papers shown
Title
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
25
18
0
04 Jun 2023
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
FedSDG-FS: Efficient and Secure Feature Selection for Vertical Federated Learning
Anran Li
Hongyi Peng
Lan Zhang
Jiahui Huang
Qing Guo
Han Yu
Yang Liu
FedML
39
28
0
21 Feb 2023
SG-VAD: Stochastic Gates Based Speech Activity Detection
Jonathan Svirsky
Ofir Lindenbaum
44
4
0
28 Oct 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks
Jurijs Nazarovs
Ronak R. Mehta
Vishnu Suresh Lokhande
Vikas Singh
UQCV
BDL
OOD
19
5
0
19 Feb 2022
Marginally calibrated response distributions for end-to-end learning in autonomous driving
Clara Hoffmann
Nadja Klein
11
2
0
03 Oct 2021
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
G. Loaiza-Ganem
John P. Cunningham
DRL
29
83
0
16 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
24
18
0
24 Jun 2019
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
27
58
0
04 Jul 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
BDL
22
307
0
12 Mar 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
56
300
0
31 Oct 2017
1