Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07874
Cited By
v1
v2 (latest)
A Unified Approach to Interpreting Model Predictions
22 May 2017
Scott M. Lundberg
Su-In Lee
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Unified Approach to Interpreting Model Predictions"
50 / 3,916 papers shown
Title
Efficient Search for Diverse Coherent Explanations
Chris Russell
80
241
0
02 Jan 2019
Explanatory Graphs for CNNs
Quanshi Zhang
Xin Eric Wang
Ruiming Cao
Ying Nian Wu
Feng Shi
Song-Chun Zhu
FAtt
GNN
44
3
0
18 Dec 2018
Explaining Neural Networks Semantically and Quantitatively
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
FAtt
62
56
0
18 Dec 2018
Interactive Naming for Explaining Deep Neural Networks: A Formative Study
M. Hamidi-Haines
Zhongang Qi
Alan Fern
Fuxin Li
Prasad Tadepalli
FAtt
HAI
50
11
0
18 Dec 2018
A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability
Xiaowei Huang
Daniel Kroening
Wenjie Ruan
Marta Kwiatkowska
Youcheng Sun
Emese Thamo
Min Wu
Xinping Yi
AAML
132
51
0
18 Dec 2018
Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery
Xiaoxiao Li
Nicha Dvornek
Yuan Zhou
Juntang Zhuang
P. Ventola
James S. Duncan
462
19
0
14 Dec 2018
Can I trust you more? Model-Agnostic Hierarchical Explanations
Michael Tsang
Youbang Sun
Dongxu Ren
Yan Liu
FAtt
53
26
0
12 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
122
102
0
28 Nov 2018
Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions
Denis A. Gudovskiy
Alec Hodgkinson
Takuya Yamaguchi
Yasunori Ishii
Sotaro Tsukizawa
FAtt
74
13
0
19 Nov 2018
On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection
Vivian Lai
Chenhao Tan
98
380
0
19 Nov 2018
Interpretable Credit Application Predictions With Counterfactual Explanations
Rory Mc Grath
Luca Costabello
Chan Le Van
Paul Sweeney
F. Kamiab
Zhao Shen
Freddy Lecue
FAtt
83
110
0
13 Nov 2018
TED: Teaching AI to Explain its Decisions
Michael Hind
Dennis L. Wei
Murray Campbell
Noel Codella
Amit Dhurandhar
Aleksandra Mojsilović
Karthikeyan N. Ramamurthy
Kush R. Varshney
80
111
0
12 Nov 2018
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
BDL
56
47
0
07 Nov 2018
Deep Weighted Averaging Classifiers
Dallas Card
Michael J.Q. Zhang
Hao Tang
96
41
0
06 Nov 2018
Progressive Disclosure: Designing for Effective Transparency
Aaron Springer
Ling Huang
65
16
0
06 Nov 2018
"I had a solid theory before but it's falling apart": Polarizing Effects of Algorithmic Transparency
Aaron Springer
S. Whittaker
32
6
0
06 Nov 2018
Explaining Explanations in AI
Brent Mittelstadt
Chris Russell
Sandra Wachter
XAI
135
666
0
04 Nov 2018
Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc
Fabrice Gamboa
Max Halford
Jean-Michel Loubes
Laurent Risser
FAtt
87
5
0
18 Oct 2018
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
82
129
0
08 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
208
1,973
0
08 Oct 2018
On the Art and Science of Machine Learning Explanations
Patrick Hall
FAtt
XAI
92
30
0
05 Oct 2018
Local Interpretable Model-agnostic Explanations of Bayesian Predictive Models via Kullback-Leibler Projections
Tomi Peltola
FAtt
BDL
76
40
0
05 Oct 2018
Interpreting Layered Neural Networks via Hierarchical Modular Representation
C. Watanabe
84
19
0
03 Oct 2018
A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees
Klaus Broelemann
Gjergji Kasneci
84
20
0
25 Sep 2018
An Adaptive Locally Connected Neuron Model: Focusing Neuron
F. Boray Tek
29
6
0
31 Aug 2018
Shedding Light on Black Box Machine Learning Algorithms: Development of an Axiomatic Framework to Assess the Quality of Methods that Explain Individual Predictions
Milo Honegger
52
35
0
15 Aug 2018
iNNvestigate neural networks!
Maximilian Alber
Sebastian Lapuschkin
P. Seegerer
Miriam Hagele
Kristof T. Schütt
G. Montavon
Wojciech Samek
K. Müller
Sven Dähne
Pieter-Jan Kindermans
79
349
0
13 Aug 2018
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
FAtt
TDI
117
217
0
08 Aug 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Helen Zhou
FaML
101
1,097
0
31 Jul 2018
Explicating feature contribution using Random Forest proximity distances
Leanne S. Whitmore
Anthe George
Corey M. Hudson
FAtt
59
7
0
17 Jul 2018
A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees
Min Wu
Matthew Wicker
Wenjie Ruan
Xiaowei Huang
Marta Kwiatkowska
AAML
91
111
0
10 Jul 2018
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
171
200
0
09 Jul 2018
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices
Till Speicher
Hoda Heidari
Nina Grgic-Hlaca
Krishna P. Gummadi
Adish Singla
Adrian Weller
Muhammad Bilal Zafar
FaML
106
265
0
02 Jul 2018
Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities
Marinka Zitnik
Francis Nguyen
Bo Wang
J. Leskovec
Anna Goldenberg
Michael M. Hoffman
LM&MA
AI4CE
77
467
0
30 Jun 2018
Deep learning in business analytics and operations research: Models, applications and managerial implications
Mathias Kraus
Stefan Feuerriegel
A. Oztekin
77
295
0
28 Jun 2018
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
57
1
0
27 Jun 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
121
529
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
140
948
0
20 Jun 2018
Instance-Level Explanations for Fraud Detection: A Case Study
Dennis Collaris
L. M. Vink
J. V. Wijk
81
31
0
19 Jun 2018
Binary Classification in Unstructured Space With Hypergraph Case-Based Reasoning
Alexandre Quemy
40
7
0
16 Jun 2018
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
84
146
0
14 Jun 2018
A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values
Mukund Sundararajan
Ankur Taly
FAtt
46
21
0
11 Jun 2018
Locally Interpretable Models and Effects based on Supervised Partitioning (LIME-SUP)
Linwei Hu
Jie Chen
V. Nair
Agus Sudjianto
FAtt
69
64
0
02 Jun 2018
How Important Is a Neuron?
Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
FAtt
GNN
77
131
0
30 May 2018
Teaching Meaningful Explanations
Noel Codella
Michael Hind
Karthikeyan N. Ramamurthy
Murray Campbell
Amit Dhurandhar
Kush R. Varshney
Dennis L. Wei
Aleksandra Mojsilović
FAtt
XAI
63
7
0
29 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
77
98
0
16 May 2018
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
93
243
0
09 May 2018
Visualizing the Feature Importance for Black Box Models
Giuseppe Casalicchio
Christoph Molnar
B. Bischl
FAtt
49
183
0
18 Apr 2018
Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the
L
0
L_0
L
0
Norm
Wenjie Ruan
Min Wu
Youcheng Sun
Xiaowei Huang
Daniel Kroening
Marta Kwiatkowska
AAML
65
39
0
16 Apr 2018
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
138
22
0
13 Apr 2018
Previous
1
2
3
...
77
78
79
Next