ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07347
  4. Cited By
Ensemble Sampling

Ensemble Sampling

20 May 2017
Xiuyuan Lu
Benjamin Van Roy
ArXivPDFHTML

Papers citing "Ensemble Sampling"

39 / 39 papers shown
Title
Generalization in Monitored Markov Decision Processes (Mon-MDPs)
Generalization in Monitored Markov Decision Processes (Mon-MDPs)
Montaser Mohammedalamen
Michael Bowling
34
0
0
13 May 2025
Toward Efficient Exploration by Large Language Model Agents
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
94
1
0
29 Apr 2025
Improved Regret of Linear Ensemble Sampling
Improved Regret of Linear Ensemble Sampling
Harin Lee
Min-hwan Oh
42
1
0
06 Nov 2024
Bayesian Bandit Algorithms with Approximate Inference in Stochastic Linear Bandits
Bayesian Bandit Algorithms with Approximate Inference in Stochastic Linear Bandits
Ziyi Huang
Henry Lam
Haofeng Zhang
38
0
0
20 Jun 2024
Online Bandit Learning with Offline Preference Data for Improved RLHF
Online Bandit Learning with Offline Preference Data for Improved RLHF
Akhil Agnihotri
Rahul Jain
Deepak Ramachandran
Zheng Wen
OffRL
47
2
0
13 Jun 2024
Improving sample efficiency of high dimensional Bayesian optimization
  with MCMC
Improving sample efficiency of high dimensional Bayesian optimization with MCMC
Zeji Yi
Yunyue Wei
Chu Xin Cheng
Kaibo He
Yanan Sui
30
5
0
05 Jan 2024
Ensemble sampling for linear bandits: small ensembles suffice
Ensemble sampling for linear bandits: small ensembles suffice
David Janz
A. Litvak
Csaba Szepesvári
38
1
0
14 Nov 2023
VITS : Variational Inference Thompson Sampling for contextual bandits
VITS : Variational Inference Thompson Sampling for contextual bandits
Pierre Clavier
Tom Huix
Alain Durmus
29
3
0
19 Jul 2023
Neural Exploitation and Exploration of Contextual Bandits
Neural Exploitation and Exploration of Contextual Bandits
Yikun Ban
Yuchen Yan
A. Banerjee
Jingrui He
44
8
0
05 May 2023
Multiplier Bootstrap-based Exploration
Multiplier Bootstrap-based Exploration
Runzhe Wan
Haoyu Wei
Branislav Kveton
R. Song
21
3
0
03 Feb 2023
Deep Active Ensemble Sampling For Image Classification
Deep Active Ensemble Sampling For Image Classification
S. Mohamadi
Gianfranco Doretto
Donald Adjeroh
UQCV
21
9
0
11 Oct 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions
  and Sample Complexity
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
55
22
0
15 Jun 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
32
18
0
08 Jun 2022
Lifting the Information Ratio: An Information-Theoretic Analysis of
  Thompson Sampling for Contextual Bandits
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
38
16
0
27 May 2022
An Analysis of Ensemble Sampling
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
37
21
0
02 Mar 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error:
  An Enhanced Bayesian Upper Confidence Bound Framework
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
Henry Lam
A. Meisami
Haofeng Zhang
41
4
0
31 Jan 2022
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty
  Propagation in Encoder-Decoder Networks
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks
Giuseppina Carannante
Dimah Dera
Nidhal C.Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
UQCV
AAML
OOD
27
6
0
10 Nov 2021
Learning to Be Cautious
Learning to Be Cautious
Montaser Mohammedalamen
Dustin Morrill
Alexander Sieusahai
Yash Satsangi
Michael Bowling
18
3
0
29 Oct 2021
The Value of Information When Deciding What to Learn
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
37
12
0
26 Oct 2021
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
48
6
0
21 Oct 2021
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits
Yikun Ban
Yuchen Yan
A. Banerjee
Jingrui He
OffRL
39
39
0
07 Oct 2021
Deep Exploration for Recommendation Systems
Deep Exploration for Recommendation Systems
Zheqing Zhu
Benjamin Van Roy
37
11
0
26 Sep 2021
Information Directed Sampling for Sparse Linear Bandits
Information Directed Sampling for Sparse Linear Bandits
Botao Hao
Tor Lattimore
Wei Deng
25
19
0
29 May 2021
Policy Optimization as Online Learning with Mediator Feedback
Policy Optimization as Online Learning with Mediator Feedback
Alberto Maria Metelli
Matteo Papini
P. DÓro
Marcello Restelli
OffRL
27
10
0
15 Dec 2020
Randomized Value Functions via Posterior State-Abstraction Sampling
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
33
7
0
05 Oct 2020
Neural Thompson Sampling
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
34
115
0
02 Oct 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
33
4
0
21 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
35
82
0
15 Jun 2020
TS-UCB: Improving on Thompson Sampling With Little to No Additional
  Computation
TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Jackie Baek
Vivek F. Farias
45
9
0
11 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
57
299
0
01 Jun 2020
Ensembled sparse-input hierarchical networks for high-dimensional
  datasets
Ensembled sparse-input hierarchical networks for high-dimensional datasets
Jean Feng
N. Simon
19
4
0
11 May 2020
Behaviour Suite for Reinforcement Learning
Behaviour Suite for Reinforcement Learning
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
...
Satinder Singh
Benjamin Van Roy
R. Sutton
David Silver
H. V. Hasselt
OffRL
32
178
0
09 Aug 2019
Perturbed-History Exploration in Stochastic Linear Bandits
Perturbed-History Exploration in Stochastic Linear Bandits
Branislav Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
24
41
0
21 Mar 2019
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Branislav Kveton
Csaba Szepesvári
Sharan Vaswani
Zheng Wen
Mohammad Ghavamzadeh
Tor Lattimore
15
69
0
13 Nov 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
21
372
0
08 Jun 2018
Practical Contextual Bandits with Regression Oracles
Practical Contextual Bandits with Regression Oracles
Dylan J. Foster
Alekh Agarwal
Miroslav Dudík
Haipeng Luo
Robert Schapire
16
124
0
03 Mar 2018
Coordinated Exploration in Concurrent Reinforcement Learning
Coordinated Exploration in Concurrent Reinforcement Learning
Maria Dimakopoulou
Benjamin Van Roy
31
40
0
05 Feb 2018
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
41
300
0
22 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1