ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07079
  4. Cited By
Scalable Variational Inference for Dynamical Systems
v1v2 (latest)

Scalable Variational Inference for Dynamical Systems

19 May 2017
Nico S. Gorbach
Stefan Bauer
J. M. Buhmann
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Inference for Dynamical Systems"

14 / 14 papers shown
Title
Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
  Engagement
Learning to Suggest Breaks: Sustainable Optimization of Long-Term User Engagement
Eden Saig
Nir Rosenfeld
60
4
0
24 Nov 2022
Variational Mixtures of ODEs for Inferring Cellular Gene Expression
  Dynamics
Variational Mixtures of ODEs for Inferring Cellular Gene Expression Dynamics
Yichen Gu
D. Blaauw
Joshua D. Welch
72
14
0
09 Jul 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
129
2
0
21 Nov 2021
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDLAI4TSAI4CE
147
20
0
04 Nov 2021
Variational Autoencoding of PDE Inverse Problems
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
  Gaussian Process Regression with Derivatives
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
64
3
0
05 Mar 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free'
  Dynamical Systems
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
Disentangled State Space Representations
Disentangled State Space Representations
Ðorðe Miladinovic
Muhammad Waleed Gondal
Bernhard Schölkopf
J. M. Buhmann
Stefan Bauer
DRL
51
30
0
07 Jun 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
105
24
0
28 May 2019
ODIN: ODE-Informed Regression for Parameter and State Inference in
  Time-Continuous Dynamical Systems
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems
Philippe Wenk
G. Abbati
Michael A. Osborne
Bernhard Schölkopf
Andreas Krause
Stefan Bauer
69
31
0
17 Feb 2019
A Block Coordinate Descent Proximal Method for Simultaneous Filtering
  and Parameter Estimation
A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation
Ramin Raziperchikolaei
Harish S. Bhat
11
5
0
16 Oct 2018
Learning Nonlinear Brain Dynamics: van der Pol Meets LSTM
Learning Nonlinear Brain Dynamics: van der Pol Meets LSTM
German Abrevaya
Irina Rish
Aleksandr Aravkin
Guillermo Cecchi
James Kozloski
Pablo Polosecki
P. Zheng
S. Dawson
Juliana Rhee
David Cox
43
2
0
24 May 2018
Robust and Scalable Models of Microbiome Dynamics
Robust and Scalable Models of Microbiome Dynamics
T. Gibson
Georg Gerber
100
37
0
11 May 2018
Constraining the Dynamics of Deep Probabilistic Models
Constraining the Dynamics of Deep Probabilistic Models
Marco Lorenzi
Maurizio Filippone
101
28
0
15 Feb 2018
1